Skip to main content
Log in

The Boundary Structure of Zero-Temperature Driven Hard Spheres

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the fundamental problem of two gas species whose molecules collide as hard spheres in the presence of a flat boundary and with dependence on only one space dimension. More specifically the steady linear problem considered is the one arising when the second gas dominates as a flow moving towards the boundary with constant microscopic velocity (and hence zero temperature). Theboundary condition adopted consists of prescribing the outgoing velocity distribution of the firstgas at the boundary. It is discovered that the presence of the boundary under general assumptions on the outgoing distribution ensures the convergence of a series of path integrals resulting in a convenient representation for the distribution of the velocities of the molecules returning at the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bardos, R. E. Caflisch and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation for a hard sphere gas, Comm. Pure Appl. Math. 39(3):323–352 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Boltzmann, (translated by Stephen G. Brush), Lectures on Gas Theory, Dover Publications, Inc. New York, 1964.

    Google Scholar 

  3. R. E. Caflisch, The Half-Space Problem for the Boltzmann Equation at Zero Temperature, Comm. Pure Appl. Math. 38: 529–547 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. T. Carleman, Sur la théorie d'equation intégrodifférentielle de Boltzmann, Acta Math. 60:369–424 (1932).

    Google Scholar 

  5. T. Carleman, Problèmes Mathématiques dans la Théorie Cinétique des Gaz, Almqvist and Wiksel, 1957.

  6. C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106 (1994) Springer-Verlag, New York.

    MATH  Google Scholar 

  7. M. Cessenat, Théorèmes de trace Lp pour les espaces de foinctions de la neutronique, C.R. Ac. Sci. Paris. Ser. I 299: 831–834 (1984).

    MATH  MathSciNet  Google Scholar 

  8. F. Golse and F. Poupaud, Stationary solution of the linearized Boltzmann equation in half-space, Math. Methods Appl. Sci. 11: 483–502 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Hilbert, Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen, (Teubner, Leipzig), Chap. 22.

  10. T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenscheften, Band 132 (Springer-Verlag New York, Inc., New York 1966).

    Google Scholar 

  11. T.-P. Liu and S.-H. Yu, The Green's Function and large-Time Behavior of Solutions for One-Dimensional Boltzmann Equation, Comm. Pure Appl. Math. 57: 1543–1608 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Sone, Kinetic theoretical studies of the half-space problem of evaporation and condensation, Transp. Theory Stat. Phys. 29:227–260 (2000).

    Article  MATH  Google Scholar 

  13. Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhauser (2002).

  14. C. Villani, A review of mathematical topics in collisional kinetic theory. In (Handbook of Fluid Mechanics), S. Friedlander and D. Serre (eds.) (North-Holland, 2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Sotirov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotirov, A. The Boundary Structure of Zero-Temperature Driven Hard Spheres. J Stat Phys 126, 95–116 (2007). https://doi.org/10.1007/s10955-006-9253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9253-1

Keywords

Navigation