Skip to main content
Log in

First-Order Phase Transition in Potts Models with Finite-Range Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the Q-state Potts model on Z d, Q≥ 3, d≥ 2, with Kac ferromagnetic interactions and scaling parameter γ. We prove the existence of a first order phase transition for large but finite potential ranges. More precisely we prove that for γ small enough there is a value of the temperature at which coexist Q+1 Gibbs states. The proof is obtained by a perturbation around mean-field using Pirogov-Sinai theory. The result is valid in particular for d = 2, Q = 3, in contrast with the case of nearest-neighbor interactions for which available results indicate a second order phase transition. Putting both results together provides an example of a system which undergoes a transition from second to first order phase transition by changing only the finite range of the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, Discontinuity of the magnetization in one-dimensional 1―∣x-y∣2 Ising and Potts models, J. Stat. Phys. 50:1–40 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. F. Baffioni, T. Kuna, I. Merola, and E. Presutti, A liquid vapor phase transition in quantum statistical mechanics, Submitted to Memoirs AMS (2004).

  3. F. Baffioni, T. Kuna, I. Merola, and E. Presutti, A relativized Dobrushin uniqueness condition and applications to Pirogov-Sinai models, Submitted to Memoirs AMS (2004).

  4. R. J. Baxter, Potts model at the critical temperature. J. Phys. C 6:L445 (1973).

    Article  ADS  Google Scholar 

  5. R. J. Baxter, H. N. V. Temperley, and S. E. Ashley, Triangular Potts model at its transition temperature, and related models. Proc. Roy. Soc. London, Ser. A 358:535 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  6. R. J. Baxter, Exactly Solved Sodels in Statistical Mechanics. (Academic Press, London,1982).

    Google Scholar 

  7. M. Biskup and L. Chayes, Rigorous analysis of discontinous phase transitions via mean field bounds. Commun. Math. Phys. 238:53–93 (2003).

    MATH  ADS  MathSciNet  Google Scholar 

  8. M. Biskup, L. Chayes, and N. Crawford, Mean-field driven first order phase transitions in systems with long-range interactions. Submitted to J. Stat. Phys. (2005).

  9. A. Bovier, I. Merola, E. Presutti, and M. Zahradnìk, On the Gibbs phase rule in the Pirogov-Sinai regime. J. Stat. Phys. 114:1235–1267 (2004).

    Article  MATH  ADS  Google Scholar 

  10. A. Bovier, M. Zahradnìk, The low-temperature phase of Kac-Ising models. J. Stat. Phys. 87:311–332 (1997).

    Article  MATH  ADS  Google Scholar 

  11. A. Bovier, and M. Zahradnìk, Cluster expansions and Pirogov-Sinai theory for long range spin systems. Markov Process and Related Fields 8:443–478 (2002).

    MATH  MathSciNet  Google Scholar 

  12. J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems: Extension of Pirogov-Sinai theory. Commun. Math. Phys. 101:501 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. M. Cassandro, and E. Presutti, Phase transitions in Ising systems with long but finite range. Markov Processes and Related Fields 2: 241–262 (1996).

    MATH  MathSciNet  Google Scholar 

  14. C. M. Fortuin, and P. W. Kasteleyn, On the random cluster model I: introduction and relation to other models. Physica 57:536–564 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Georgii, O. Häggström, and C. Maes, The Random Geometry of Equilibrium Phases, in C. Domb and J. L. Lebowitz (eds.) Phase Transitions and Critical Phenomena, vol 18. (Academic Press, London, pp 1–142).

  16. G. R. Grimmett, The stochastic random cluster process and the uniqueness of random cluster measures. Ann. Prob. 23:1461–1510 (1995).

    MATH  MathSciNet  Google Scholar 

  17. G. R. Grimmett, The random-cluster model, in F.P. Kelly (ed.) Probability, Statistics and Optimization. (John Wiley & Sons, Chichester, pp. 49–63, 1994).

    Google Scholar 

  18. H. Kesten and R. H. Schonmann, Behavior in large dimension of the Potts and Heisenberg models. Reviews in Math. Phys. 1:147–182 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Kotecký and S. B. Shlosman, First order phase transition in large entropy lattice models. Commun. Math. Phys. 83:493–515 (1982).

    Article  ADS  Google Scholar 

  20. R. Kotecký and D. Preiss, Cluster expansion for abstract polymer models. Comm. Math. Phys. 103:491–498 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. J. L. Lebowitz, A. E. Mazel, and E. Presutti, Liquid-vapour phase transitions for systems with finite range interactions. J. Stat. Phys. 94:955–1025 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  22. J. L. Lebowitz, A. E. Mazel, and E. Presutti, Rigorous proof of a liquid-vapour phase transition in a continuum particle system. Phys. Rev. Lett. 80:4701 (1998).

    Article  ADS  Google Scholar 

  23. J. L. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals Maxwell theory of the liquid-vapor transition. J. Math. Phys. 7:98–113 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  24. S. A. Pirogov and Ya. G. Sinai, (i) Teor. Mat. Fiz. 25:358–369 (1975), in Russian; English translation: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25:1185–1192 (1975); (ii) Teor. Mat. Fiz. 26:61–76 (1976), in Russian; English translation: Phase diagrams of classical lattice systems. Continuation. Theor. Math. Phys. 26:39–49 (1976).

    MathSciNet  Google Scholar 

  25. R. Potts, Some generalyzed order-disorder transformations. Proc. Camb. Phil. Soc. 48:106–109 (1952).

    MATH  MathSciNet  Google Scholar 

  26. E. Presutti, Scaling limits in statistical mechanics & microstructures in continuum mechanics. In preparation (2005).

  27. S. Reynal and H. T. Diep, Reexamination of the long-range Potts model: A multicanonical approach. Phys. Rev. E 69:026109 (2004).

    Article  ADS  Google Scholar 

  28. A. D. Sokal, Chromatic polynomials, Potts models and all that. Physica A279:324–332 (2000).

    ADS  Google Scholar 

  29. D. J. A. Welsh and C. Merino, The Potts model and the Tutte polynomial. J. Math. Phys. 41(3):1127–1149 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. F. Y. Wu, The Potts Model. R. Mod. Phys. 54:235–268 (1982).

    Article  ADS  Google Scholar 

  31. M. Zahradnìk, A short course on the Pirogov-Sinai theory. Rend. Mat. Appl. 18:411–486 (1998).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gobron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobron, T., Merola, I. First-Order Phase Transition in Potts Models with Finite-Range Interactions. J Stat Phys 126, 507–583 (2007). https://doi.org/10.1007/s10955-006-9230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9230-8

Key Words

Navigation