Skip to main content
Log in

How the Number of Alleles Influences Gene Expression

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The higher organisms, eukaryotes, are diploid and most of their genes have two homological copies (alleles). However, the number of alleles in a cell is not constant. In the S phase of the cell cycle all the genome is duplicated and then in the G2 phase and mitosis, which together last for several hours, most of the genes have four copies instead of two. Cancer development is, in many cases, associated with a change in allele number. Several genetic diseases are caused by haploinsufficiency: Lack of one of the alleles or its improper functioning. In the paper we consider the stochastic expression of a gene having a variable number of copies. We applied our previously developed method in which the reaction channels are split into slow (connected with change of gene state) and fast (connected with mRNA/protein synthesis/decay), the later being approximated by deterministic reaction rate equations. As a result we represent gene expression as a piecewise deterministic time-continuous Markov process, which is further related with a system of partial differential hyperbolic equations for probability density functions (pdfs) of protein distribution. The stationary pdfs are calculated analytically for haploidal gene or numerically for diploidal and tetraploidal ones. We distinguished nine classes of simultaneous activation of haploid, diploid and tetraploid genes. This allows for analysis of potential consequences of gene duplication or allele loss. We show that when gene activity is autoregulated by a positive feedback, the change in number of gene alleles may have dramatic consequences for its regulation and may not be compensated by the change of efficiency of mRNA synthesis per allele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Basak, A. Bisi and M. K. Ghosh, Stability of degenerate diffusions with state-dependent switching, J. Math. Anal. Appl. 240:219–248 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  2. W. J. Blake, M. Kaern, C. R. Cantor and J. J. Collins, Noise in eukaryotic gene expression, Nature 422:633–637 (2003).

    Article  ADS  Google Scholar 

  3. A. Bobrowski, Degenerate convergence of semigroups related to a model of stochastic gene expression. Semigroup forum. 73: 345–366 (2006).

    Google Scholar 

  4. R. Cheong, A. Bergmann, Sh. L. Werner, J. Regal, A. Hoffmann and A. Levchenko, Transient IκB kinase activity mediates temporal NF-κB dynamics in response to wide rage of tumor necrosis factor- doses. J. Biol. Chem. 281:2945–2950 (2006).

    Article  Google Scholar 

  5. D. A. Cook, A. N. Gerber and S. J. Tapscott, Modeling stochastic gene expression: Implications for haploinsufficiency, Proc. Natl. Acad. Sci. (USA) 95:15641–15646 (1998).

    Article  ADS  Google Scholar 

  6. W. D. Cook and B. J. McCaw, Accommodating haploinsufficient tumor suppressor genes in Knudson’s model, Oncogene 19:3434–3438 (2000).

    Article  Google Scholar 

  7. M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Stochastic gene expression in a single cell, Science 297:1183–1186 (2002).

    Article  ADS  Google Scholar 

  8. D. T. Gillespie, Exact stochastic simulations of coupled chemical reactions, J. Phys. Chem. 81:2340–2361 (1977).

    Article  Google Scholar 

  9. M. Kaern, C. T. Elston, W. J. Blake and J. J. Collins, Stochasticity in gene expression: From theories to phenotypes, Nat. Rev. Genet. 6:451–464 (2005).

    Article  Google Scholar 

  10. T. B. Kepler and T. C. Elston, Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations, Biophys. J. 81:3116–3136 (2001).

    ADS  Google Scholar 

  11. A. M. Kierzek, J. Zaim and P. Zielenkiewicz, The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression, J. Biol. Chem. 276:8165–8172 (2001).

    Article  Google Scholar 

  12. M. S. H. Ko, Stochastic model for gene induction, J. Theor. Biol. 153:181–194 (1991).

    Article  Google Scholar 

  13. T. Lipniacki, P. Paszek, A. R. Brasier, B. Luxon and M. Kimmel, Mathematical model of NF-kB regulatory module, J. Theor. Biol. 228:195–215 (2004).

    Article  MathSciNet  Google Scholar 

  14. T. Lipniacki, P. Paszek, A.R. Brasier, B. Luxon and M. Kimmel, Stochastic regulation in early immune response, Biophys. J. 90:725–742 (2006).

    Article  Google Scholar 

  15. T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A. R. Brasier and M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238:348–367 (2006).

    Article  MathSciNet  Google Scholar 

  16. H. H. McAdams and A. Arkin, Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci. (USA) 94:814–819 (1997).

    Article  ADS  Google Scholar 

  17. J. Paulsson, Models of stochastic gene expression, Phys. Life Rev. 2:157–175 (2005).

    Article  ADS  Google Scholar 

  18. P. Paszek, T. Lipniacki, A. R. Brasier, B. Tian, D. E. Nowak and M. Kimmel, Stochastic effects of multiple regulators on expression profiles in Eukaryotes, J. Theor. Biol. 233:423–433 (2005).

    Article  MathSciNet  Google Scholar 

  19. P. Paszek, Modeling stochasticity in gene regulation: Characterization in the terms of the underlying distribution function, Bull. Math. Biol. in press (2007) DOI 10.1007/s11538-006-9176-7.

  20. J. R. Pirone and T. C. Elston, Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression,J. Theor. Biol. 226:111–121 (2004).

    Article  MathSciNet  Google Scholar 

  21. Ch. V. Rao, D. M. Wolf and A. P. Arkin, Control, exploitation and tolerance of intracellular noise, Nature 420:231–237 (2002).

    Article  ADS  Google Scholar 

  22. J. M. Raser and E. K. O’Shea, Control of stochasticity in eukaryotic gene expression, Science 304:1811–1814 (2004).

    Article  ADS  Google Scholar 

  23. J. D. Seidman and Ch. Seidman, Transcription factor haploinsufficiency: When half a loaf is not enough, J. Clinical Investigations 109:451–455 (2002).

    Article  Google Scholar 

  24. J. A. Stirland, Z. C. Seymour, S. Windeatt, A. J. Norris, P. Stanley, M. G. Castro, A. S. I. Loudon, M. R. H. White, and J. R. E. Davis, Real-time imaging of gene promoter activity using an adenoviral reporter construct demonstrates transcriptional dynamics in normal anterior pituary cells, J. Endocrinology 178:61–69 (2003).

    Google Scholar 

  25. Y. Tao, Intrinsic and external noise in an auto-regulatory genetic network, J. Theor. Biol. 229 :147–156 (2004).

    Article  Google Scholar 

  26. Y. Tao, Intrinsic noise, gene regulation and steady-state statistics in a two-gene network,J. Theor. Biol. 231:63–568 (2004).

    Article  Google Scholar 

  27. N. Takasuka, M. R. H. White, C. D. Wood, W. R. Robertson and J. R. E. Davis, Dynamic changes in prolactin promoter activation in individual living lactotrophic cells, Endocrinology 139:1361–1368 (1998).

    Article  Google Scholar 

  28. M. Thattai and A. Oudenaarden, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. (USA) 98 :8614–8619 (2001).

    Article  ADS  Google Scholar 

  29. R. Tomioka, H. Kimura, T.J. Kobayashi and K. Aihara, Multivariate analysis of noise in genetic regulatory networks,J. Theor. Biol. 229:501–521 (2004).

    Article  MathSciNet  Google Scholar 

  30. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam) (1992).

    Google Scholar 

  31. M. C. Walters, S. Fiering, J. Eidemiller, W. Magis, M. Groudine and D. I. K. Martin, Enhancers increase the probability but not the level of gene expression,Proc. Natl. Acad. Sci. (USA) 92 :7125–7129 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Lipniacki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hat, B., Paszek, P., Kimmel, M. et al. How the Number of Alleles Influences Gene Expression. J Stat Phys 128, 511–533 (2007). https://doi.org/10.1007/s10955-006-9218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9218-4

Keywords

Navigation