Skip to main content
Log in

Wavevector-Dependent Susceptibility in Z-Invariant Pentagrid Ising Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the q-dependent susceptibility χ(q) of a Z-invariant ferromagnetic Ising model on a Penrose tiling, as first introduced by Korepin using de Bruijn's pentagrid for the rapidity lines. The pair-correlation function for this model can be calculated exactly using the quadratic difference equations from our previous papers. Its Fourier transform χ(q) is studied using a novel way to calculate the joint probability for the pentagrid neighborhoods of the two spins, reducing this calculation to linear programming. Since the lattice is quasiperiodic, we find that χ(q) is aperiodic and has everywhere dense peaks, which are not all visible at very low or high temperatures. More and more peaks become visible as the correlation length increases—that is, as the temperature approaches the critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Shechtman, I. Blech, D. R. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53:1951–1953 (1984).

    Article  ADS  Google Scholar 

  • R. Penrose, Tilings and quasi-crystals; a non-local growth problem?, in Introduction to The Mathematics of Quasicrystals, Aperiodicity and Order, Vol. 2, M. V. Jarić, ed. (Academic Press, Boston, 1989), pp. 53–79.

  • R. Penrose, The rôle of aesthetics in pure and applied mathematical research, Bull. Inst. Math. Appl. 10:266–271 (1974).

    Google Scholar 

  • R. Penrose, Pentaplexity: A class of non-periodic tilings of the plane, The Mathematical Intelligencer 2:32–37 (1979), [reprinted from Eureka No. 39].

    MATH  MathSciNet  Google Scholar 

  • N. G. de Bruijn, Algebraic theory of Penrose’s non-periodic tilings of the plane. I, Indagationes Mathematicae 84:38–52 (1981); —. II, ibid. 84:53–66 (1981).

  • A. L. Mackay, De nive quinquangula: On the pentagonal snowflake, Kristallografiya 26:910–919 (1981) [Sov. Phys. Crystallogr. 26:517–522 (1981)].

    Google Scholar 

  • A. L. Mackay, Crystallography on the Penrose pattern, Physica A 114:609–613 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  • D. Levine and P. J. Steinhardt, Quasicrystals: A new class of ordered structures, Phys. Rev. Lett. 53:2477–2480 (1984).

    Article  ADS  Google Scholar 

  • M. Baake, U. Grimm, and R. V. Moody, Die verborgene Ordnung der Quasikristalle, Spektrum der Wissenschaft, Heft 02 (Februar 2002) 64–74, [in German, English translation: What is Aperiodic Order?, Preprint math.HO/0203252].

  • C. Janot, Quasicrystals: A Primer, 2nd Ed. (Clarendon Press, Oxford, 1994).

    MATH  Google Scholar 

  • C. L. Henley, Quasicrystal order, its origins and its consequences: A survey of current models, Comments Cond. Mat. Phys. 13:59–117 (1987).

    Google Scholar 

  • M. Baake, A guide to mathematical quasicrystals, in Quasicrystals—An Introduction to the Structure, Physical Properties, and Applications, Material Science, Vol. 55, J.-B. Suck, M. Schreiber, and P. Häuß ler, eds., (Springer, Berlin, 2002), pp. 17–48.

  • V. E. Korepin, Eight-vertex model of the quasicrystal, Phys. Lett. A 118:285–287 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  • R. J. Baxter, Solvable eight vertex model on an arbitrary planar lattice, Phil. Trans. R. Soc. Lond. A 289:315–346 (1978).

    ADS  MathSciNet  Google Scholar 

  • V. E. Korepin, Completely integrable models in quasicrystals, Commun. Math. Phys. 110:157–171 (1987).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • N. V. Antonov and V. E. Korepin, Critical properties and correlation functions of the eight-vertex model on a quasicrystal, Zap. Nauch. Semin. LOMI 161:13–23 (1987) [J. Sov. Math. 46:2058–2065 (1989)].

  • N. V. Antonov and V. E. Korepin, Critical properties of completely integrable spin models in quasicrystals, Teor. Mat. Fiz. 77:402–411 (1988) [Theor. Math. Phys. 77:1282–1288 (1988)].

  • T. C. Choy, Ising models on two-dimensional quasi-crystals: Some exact results, Intern. J. Mod. Phys. B 2:49–63 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  • M. Baake, U. Grimm, and R. J. Baxter, A critical Ising model on the labyrinth, Intern. J. Mod. Phys. B 8:3579–3600 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  • U. Grimm, M. Baake, and H. Simon, Ising spins on the labyrinth, in Proc. of the 5th International Conference on Quasicrystals, C. Janot and R. Mosseri, eds. (World Scientific, Singapore, 1995), pp. 80–83.

  • U. Grimm and M. Baake, Aperiodic Ising models, in The Mathematics of Long-Range Aperiodic Order, R. V. Moody, ed. (Kluwer, Dordrecht, 1997), pp. 199–237.

  • H. Aoyama and T. Odagaki, Eight-parameter renormalization group for Penrose lattices, J. Stat. Phys. 48:503–511 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • G. Amarendra, G. Ananthakrishna, and G. Athithan, Critical behavior of the Ising model on a two-dimensional Penrose lattice, Europhys. Lett. 5:181–184 (1988).

    ADS  Google Scholar 

  • S. M. Bhattacharjee, J.-S. Ho, and J. A. Y. Johnson, Translational invariance in critical phenomena: Ising model on a quasi-lattice, J. Phys. A 20:4439–4448 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  • Y. Okabe and K. Niizeki, Monte Carlo simulation of the Ising model on the Penrose lattice, J. Phys. Soc. Jpn. 57:16–19 (1988).

    Article  ADS  Google Scholar 

  • Y. Okabe and K. Niizeki, Duality in the Ising model on the quasicrystals, J. Phys. Soc. Jpn. 57:1536–1539 (1988).

    Article  ADS  Google Scholar 

  • E. S. Sørensen, M. V. Jarić, and M. Ronchetti, Ising model on the Penrose lLattice: Boundary conditions, Phys. Rev. B 44:9271–9282 (1991).

    Article  ADS  Google Scholar 

  • L.-H. Tang and M. V. Jarić, Equilibrium quasicrystal phase of a Penrose tiling model, Phys. Rev. B 41:4524–4546 (1990), see p. 4537.

    Google Scholar 

  • O. Redner and M. Baake, Invaded cluster algorithm for critical properties of periodic and aperiodic planar Ising models, J. Phys. A 33:3097–3109 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • R. Abe and T. Dotera, High temperature expansion for the Ising model on the Penrose lattice, J. Phys. Soc. Jpn. 58:3219–3226 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  • T. Dotera and R. Abe, High temperature expansion for the Ising model on the dual Penrose lattice, J. Phys. Soc. Jpn. 59:2064–2077 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  • P. Repetowicz, Finite-lattice expansion for the Ising model on the Penrose tiling, J. Phys. A 35:7753–7772 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • H. Simon, M. Baake, and U. Grimm, Lee–Yang zeros for substitutional systems, in Proc. of the 5th International Conference on Quasicrystals, C. Janot and R. Mosseri, eds., (World Scientific, Singapore, 1995), pp. 100–103.

  • H. Simon and M. Baake, Lee–Yang zeros in the scaling region of a two-dimensional quasiperiodic Ising model, J. Phys. A 30:5319–5327 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • P. Repetowicz, U. Grimm, and M. Schreiber, Planar quasiperiodic Ising models, Mat. Science Eng. A 294-296:638–641 (2000).

    Article  Google Scholar 

  • H. Au-Yang and J. H. H. Perk, Susceptibility calculations in periodic and quasiperiodic planar Ising models, Physica A 321:81–89 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • D. Levine and P. J. Steinhardt, Quasicrystals. I. Definition and structure, Phys. Rev. B 34:596–616 (1986).

    Google Scholar 

  • J. E. S. Socolar and P. J. Steinhardt, Quasicrystals. II. Unit-cell configurations, Phys. Rev. B 34:617–647 (1986).

    Article  ADS  Google Scholar 

  • T. C. Lubensky, J. E. S. Socolar, P. J. Steinhardt, P. A. Bancel, and P. A. Heiney, Distortion and peak broadening in quasicrystal diffraction patterns, Phys. Rev. Lett. 57:1440–1443 (1986).

    Article  ADS  Google Scholar 

  • A. Hof, Diffraction of aperiodic structures at high temperatures, J. Phys. A 28:57–62 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • B. Kaufman and L. Onsager, Crystal statistics. III. Short-range order in a binary Ising lattice, Phys. Rev. 76:1244–1252 (1949).

    Google Scholar 

  • M. E. Fisher, The susceptibility of the plane Ising model, Physica 25:521–524 (1959).

    Article  ADS  Google Scholar 

  • E. W. Montroll, R. B. Potts, and J. C. Ward, Correlations and spontaneous magnetization of the two-dimensional Ising model, J. Math. Phys. 4:308–322 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  • B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model (Harvard Univ. Press, Cambridge, Mass., 1973).

    MATH  Google Scholar 

  • T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B 13:316–374 (1976).

    Article  ADS  Google Scholar 

  • D. B. Abraham, Pair function for the rectangular Ising ferromagnet, Commun. Math. Phys. 60:181–191 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  • J. H. H. Perk, Quadratic identities for Ising correlations, Phys. Lett. A 79:3–5 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  • H. Au-Yang and J. H. H. Perk, Critical correlations in a Z-invariant inhomogeneous Ising model, Physica A 144:44–104 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  • C. A. Tracy, Universality class of a Fibonacci Ising model, J. Stat. Phys. 51:481–490 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • C. A. Tracy, Universality classes of some aperiodic Ising models, J. Phys. A 21:L603–L605 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  • H. Au-Yang and B. M. McCoy, Theory of layered Ising models. II. Spin correlation functions parallel to the layering, Phys. Rev. B 10:3885–3905 (1974).

    Google Scholar 

  • B. M. McCoy and T. T. Wu, Theory of Toeplitz determinants and spin correlations of the two-dimensional Ising model. II, Phys. Rev. 155:438–452 (1967).

    Google Scholar 

  • H. Au-Yang, B.-Q. Jin, and J. H. H. Perk, Wavevector-dependent susceptibility in quasiperiodic Ising models, J. Stat. Phys. 102:501–543 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  • H. Au-Yang and J. H. H. Perk, Wavevector-dependent susceptibility in aperiodic planar Ising models, in MathPhys Odyssey 2001: Integrable Models and Beyond, M. Kashiwara and T. Miwa, eds. (Birkhäuser, Boston, 2002), pp. 1–21.

  • X.-P. Kong, Wave-Vector Dependent Susceptibility of the Two-Dimensional Ising Model, (Ph. D. Thesis, State University of New York at Stony Brook, September 1987).

  • P. W. Stephens, The icosahedral glass model, in Extended Icosahedral Structures, Aperiodicity and Order, Vol. 3, M. V. Jarić and D. Gratias, eds. (Academic Press, Boston, 1989), pp. 37–104.

  • M. Gardner, Extraordinary nonperiodic tiling that enriches the theory of tiles, Scientific American 236#1:110–121 (January 1977).

  • F. Y. Wu, Ising model with four-spin interactions, Phys. Rev. B 4:2312–2314 (1971).

    Article  ADS  Google Scholar 

  • L. P. Kadanoff and F. J. Wegner, Some critical properties of the eight-vertex model, Phys. Rev. B 4:3989–3993 (1971).

    Article  ADS  Google Scholar 

  • H. Au-Yang and J. H. H. Perk, Correlation functions and susceptibility in the Z-invariant Ising model, in MathPhys Odyssey 2001: Integrable Models and Beyond, M. Kashiwara and T. Miwa, eds. (Birkhäuser, Boston, 2002), pp. 23–48.

  • N. G. de Bruijn, Sequences of zeros and ones generated by special production rules, Indagationes Mathematicae 84:27–37 (1981).

    Article  Google Scholar 

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th edition, (Oxford University Press, London, 1960), Ch. XXIII Kronecker’s Theorem.

  • H. Au-Yang and J. H. H. Perk, New results for susceptibilities in planar Ising models, Int. J. Mod. Phys. B 16:2089–2095 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • H. Au-Yang and J. H. H. Perk, Susceptibility calculations in periodic and quasiperiodic planar Ising models, Physica A 321:81–89 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • N. G. de Bruijn, Quasicrystals and their Fourier transform, Indagationes Mathematicae 89:123–152 (1986).

    Article  Google Scholar 

  • P. Cramer and R. Neri, On periodic and non-periodic space fillings of Em obtained by projection, Acta Crystallogr. A 40:580–587 (1984).

    Article  Google Scholar 

  • F. Gähler and J. Rhyner, Equivalence of the generalised grid and projection methods for the construction of quasiperiodic tilings, J. Phys. A 19:267–277 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V.E. Korepin, F. Gähler, and J. Rhyner, Quasiperiodic tilings: a Generalized grid-projection method, Acta Crystallogr. A 44:667–672 (1988).

    Article  Google Scholar 

  • M. Duneau and A. Katz, Quasiperiodic patterns, Phys. Rev. Lett. 54:2688–2691 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  • P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, Al0.86Mn0.14; A six-dimensional crystal, P’isma Zh. Eksp. Teor. Fiz. 41:119–121 (1985) [JETP Lett. 41:145–149 (1985)].

  • M. V. Jarić, Diffraction from quasicrystals: Geometric structure factor, Phys. Rev. B 34:4685–4698 (1986).

    Google Scholar 

  • V. Elser, The diffraction pattern of projected structures, Acta Crystallogr. A 42:36–43 (1986).

    Article  MathSciNet  Google Scholar 

  • P. Repetowicz, U. Grimm, and M. Schreiber, High-temperature expansion for Ising models on quasiperiodic tilings, J. Phys. A 32:4397–4418 (1999).

    Article  MATH  ADS  Google Scholar 

  • A. N. Rogers, C. Richard, and A. J. Guttmann, Self-avoiding walks and polygons on quasiperiodic tilings, J. Phys. A 36:6661–6673 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • M. Baake, P. Kramer, M. Schlottmann, and D. Zeidler, Planar patterns with fivefold symmetry as sections of periodic structures in 4-space, Intern. J. Mod. Phys. A 15-16:2217–2268 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  • M. Baake, D. Joseph, P. Kramer, and M. Schlottmann, Root lattices and quasicrystals, J. Phys. A 23:L1037–L1041 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  • M. Baake and U. Grimm, Combinatorial problems of (quasi-)crystallography, in Quasicrystals—Structure and Physical Properties, H.-R. Trebin, ed. (Wiley–VCH, New York, 2003), pp. 160–171.

  • H. Tsunetsugu, T. Fujiwara, K. Ueda, and T. Tokihiro, Eigenstates in 2-dimensional Penrose tiling, J. Phys. Soc. Jpn. 55:1420–1423 (1986).

    Article  ADS  Google Scholar 

  • H. Tsunetsugu, T. Fujiwara, K. Ueda, and T. Tokihiro, Electronic properties of the Penrose lattice. I. Energy spectrum and wave functions, Phys. Rev. B 43:8879–8891 (1991).

    Article  ADS  Google Scholar 

  • H. Tsunetsugu and K. Ueda, Electronic properties of the Penrose lattice. II. Conductance at zero temperature, Phys. Rev. B 43:8892–8902 (1991).

    Google Scholar 

  • B. Grünbaum and G.C. Shephard, Tilings and Patterns (W. H. Freeman and Co., New York, 1987), Ch. 11, Wang Tiles.}

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques H. H. Perk.

Additional information

Supported in part by NSF Grant No. PHY 01-00041.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Au-Yang, H., Perk, J.H.H. Wavevector-Dependent Susceptibility in Z-Invariant Pentagrid Ising Model. J Stat Phys 127, 221–264 (2007). https://doi.org/10.1007/s10955-006-9212-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9212-x

Keywords

Navigation