Skip to main content
Log in

Uniqueness for a Class of Spatially Homogeneous Boltzmann Equations Without Angular Cutoff

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the 3-dimensional spatially homogeneous Boltzmann equation, which describes the evolution in time of the velocity distribution in a gas, where particles are assumed to undergo binary elastic collisions. We consider a cross section bounded in the relative velocity variable, without angular cutoff, but with a moderate angular singularity. We show that there exists at most one weak solution with finite mass and momentum. We use a Wasserstein distance. Although our result is far from applying to physical cross sections, it seems to be the first one which deals with cross sections without cutoff for non Maxwellian molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. L. Arkeryd and A. Nouri, The stationary Boltzmann equation in ℝn with given indata. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)1(2):359–385 (2002).

    MathSciNet  Google Scholar 

  2. 2. A. Bhatt and R. Karandikar, Invariant measures and evolution equations for Markov processes characterized via martingale problems. Ann. Probab. 21(4):2246–2268 (1993).

    MathSciNet  Google Scholar 

  3. 3. S. Ethier, T. Kurtz, Markov processes. Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley and Sons, Inc., New York, 1986.

    Google Scholar 

  4. 4. L. Desvillettes, Boltzmann's Kernel and the Spatially Homogeneous Boltzmann Equation. Rivista di Matematica dell'Universita di Parma 6(4):1–22 (special issue) (2001).

    Google Scholar 

  5. 5. L. Desvillettes, C. Graham, and S. Méléard, Probabilistic interpretation and numerical approximation of a Kac equation without cutoff. Stochastic Process. Appl. 84(1):115–135 (1999).

    Article  MathSciNet  Google Scholar 

  6. 6. L. Desvillettes and C. Mouhot, Regularity, stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions, in preparation.

  7. 7. N. Fournier and S. Méléard, A stochastic particle numerical method for 3D Boltzmann equations without cutoff. Math. Comp. 71(238):583–604 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. 8. T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions. J. Statist. Phys. 89(3–4):751–776 (1997).

    MathSciNet  Google Scholar 

  9. 9. J. Horowitz and R. L. Karandikar, Martingale problems associated with the Boltzmann equation. Seminar on Stochastic Processes, 1989 (San Diego, CA, 1989), pp. 75–122, Progr. Probab., 18, Birkhuser Boston, Boston, MA, 1990.

    Google Scholar 

  10. 10. S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 16(4):467–501 (1999).

    Article  MathSciNet  Google Scholar 

  11. 11. H. Tanaka, An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas , Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 27, 47–52, 1973.

    Article  MathSciNet  Google Scholar 

  12. 12. H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 46:67–105 (1978).

    Article  Google Scholar 

  13. 13. H. Tanaka, On the uniqueness of Markov process associated with the Boltzmann equation of Maxwellian molecules. Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976), Wiley, New York-Chichester-Brisbane, 1978, pp. 409–425.

    Google Scholar 

  14. 14. G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Statist. Phys. 94(3–4):619–637 (1999).

    Article  MathSciNet  Google Scholar 

  15. 15. C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rational Mech. Anal. 143(3):273–307 (1998).

    Article  MathSciNet  Google Scholar 

  16. 16. C. Villani, A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics , Vol. I (North-Holland, Amsterdam, 2002), pp. 71–305.

    Google Scholar 

  17. 17. C. Villani, Topics in optimal transportation. Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2003), p. 58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Fournier.

Additional information

MSC 2000 : 82C40.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, N. Uniqueness for a Class of Spatially Homogeneous Boltzmann Equations Without Angular Cutoff. J Stat Phys 125, 923–942 (2006). https://doi.org/10.1007/s10955-006-9208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9208-6

Keywords

Navigation