Skip to main content
Log in

Onsager-Casimir Reciprocal Relations Based on the Boltzmann Equation and Gas-Surface Interaction. Gaseous Mixtures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The approach to the Onsager-Casimir reciprocity relations based on the linearized Boltzmann equation and gas-surface interaction law regarding kinetic coefficients which are neither odd nor even with respect to time reversal is applied to gaseous mixtures. As an example, the slip velocity problem is considered. It is shown that using the reciprocal relations the viscous, thermal and diffuse slip coefficients can be calculated simultaneously solving a unique kinetic coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. F. Sharipov, Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction. I. General theory for single gas. Phys. A 203:437–456 (1994).

    Article  MathSciNet  Google Scholar 

  2. 2. F. Sharipov, Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction. II. Application of the theory for single gas. Phys. A 203:457–485 (1994).

    Article  MathSciNet  Google Scholar 

  3. 3. F. Sharipov, Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction. III. Theory and its application for gaseous mixtures. Phys. A 209:457–476 (1994).

    Article  MathSciNet  Google Scholar 

  4. 4. F. Sharipov, Onsager-Casimir reciprocity relations for a mixture of rarefied gases interacting with a laser radiation. J. Stat. Phys. 78:413–430 (1995).

    Article  ADS  Google Scholar 

  5. 5. F. Sharipov, Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction. IV Rotating systems. Phys. A 260:499–509 (1998).

    Article  Google Scholar 

  6. 6. F. Sharipov, Onsager-Casimir reciprocity relation for gyrothermal effect with polyatomic gases. Phys. Rev. E 59:5128–5132 (1999).

    Article  ADS  Google Scholar 

  7. 7. F. Sharipov, Rarefied gas flow through a long tube at any temperature difference. J. Vac. Sci. Technol. A 14:2627–2635 (1996).

    Article  ADS  Google Scholar 

  8. 8. F. Sharipov and V. Seleznev, Data on internal rarefied gas flows. J. Phys. Chem. Ref. Data 27:657–706 (1998).

    Article  ADS  Google Scholar 

  9. 9. F. Sharipov, Non-isothermal gas flow through rectangular microchannels. J. Micromech. Microeng. 9:394–401 (1999).

    Article  ADS  Google Scholar 

  10. 10. F. Sharipov and D. Kalempa, Gaseous mixture flow through a long tube at arbitrary Knudsen number. J. Vac. Sci. Technol. A 20:814–822 (2002).

    Article  ADS  Google Scholar 

  11. 11. F. Sharipov, Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. III. Poiseuille flow and thermal creep through a long tube. Eur. J. Mech. B/Fluids 22:145–154 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. 12. S. Naris, D. Valougeorgis, D. Kalempa, and F. Sharipov, Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature and concentration gradients. Phys. Fluids 17:100607 (2005).

    Article  ADS  Google Scholar 

  13. 13. F. Sharipov, P. Fahrenbach, and A. Zipp, Numerical modeling of Holweck pump. J. Vac. Sci. Technol. A 23:1331–1329 (2005).

    Article  ADS  Google Scholar 

  14. 14. F. Sharipov, Heat transfer in the Knudsen layer. Phys. Rev. E 69:061201 (2004).

    Article  ADS  Google Scholar 

  15. 15. F. Sharipov, Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction law. Single gas. Phys. Rev. E 73:026110 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  16. 16. S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases. (University Press, Cambridge, 1952).

    Google Scholar 

  17. 17. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases. (North-Holland Publishing Company, Amsterdam, 1972).

    Google Scholar 

  18. 18. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics. (Dover Publications, Inc., New York, 1984).

    Google Scholar 

  19. 19. C. E. Siewert and D. Valougeorgis, Concise and Accurate Solutions to Half-Space Binary-Gas Flow Problems Defined by the McCormack Model and Specular-Diffuse Wall Conditions. Eur. J. Mech. B/Fluid 23:709–726 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  20. 20. F. J. McCormack, Construction of linearized kinetic models for gaseous mixture and molecular gases. Phys. Fluids 16:2095–2105 (1973).

    Article  ADS  Google Scholar 

  21. 21. F. Sharipov and D. Kalempa, Velocity slip and temperature jump coefficients for gaseous mixtures. I. Viscous slip coefficient. Phys. Fluids 15:1800–1806 (2003).

    Article  ADS  Google Scholar 

  22. 22. F. Sharipov and D. Kalempa, Velocity slip and temperature jump coefficients for gaseous mixtures. II. Thermal slip coefficient. Phys. Fluids 16:759–764 (2004).

    Article  ADS  Google Scholar 

  23. 23. F. Sharipov and D. Kalempa, Velocity slip and temperature jump coefficients for gaseous mixtures. III. Diffusion slip coefficient. Phys. Fluids 16:3779–3785 (2004).

    Article  ADS  Google Scholar 

  24. 24. S. Takata, S. Yasuda, S. Kosuge, and K. Aoki, Numerical analysis of thermal-slip and diffusion-slip flows of a binary mixture of hard-sphere molecular gases. Phys. Fluids 15:3745–3766 (2003).

    Article  ADS  Google Scholar 

  25. 25. S. Yasuda, S. Takata, and K. Aoki, Numerical analysis of the shear flow of a binary mixture of hard-sphere gases over a plane wall. Phys. Fluids 16:1989–2003 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Sharipov.

Additional information

PACS: 05.70.Ln

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharipov, F., Kalempa, D. Onsager-Casimir Reciprocal Relations Based on the Boltzmann Equation and Gas-Surface Interaction. Gaseous Mixtures. J Stat Phys 125, 661–675 (2006). https://doi.org/10.1007/s10955-006-9200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9200-1

Keywords

Navigation