Skip to main content
Log in

The Role of Cell-Cell Adhesion in Wound Healing

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a stochastic model which describes fronts of cells invading a wound. In the model cells can move, proliferate, and experience cell-cell adhesion. We find several qualitatively different regimes of front motion and analyze the transitions between them. Above a critical value of adhesion and for small proliferation large isolated clusters are formed ahead of the front. This is mapped onto the well-known ferromagnetic phase transition in the Ising model. For large adhesion, and larger proliferation the clusters become connected (at some fixed time). For adhesion below the critical value the results are similar to our previous work which neglected adhesion. The results are compared with experiments, and possible directions of future work are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bramson, P. Calderoni, A. Demasi, P. Ferrari, J. Lebowitz and R. H. Schonmann, Microscopic selection principle for a diffusion-reaction equation, J. Stat. Phys. 45(5–6): 905–920 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Callaghan, E. Khain, L. M. Sander and R. M. Ziff, A stochastic model for wound healing, J. Stat. Phys. 122(5): 909–924 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  3. R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen. 7: 355–369 (1937).

    Google Scholar 

  4. J. S. Langer, in C. Godreche ed. Solids far from equilibrium, Cambridge, Cambridge University Press, New York, pp. 297–364 (1992).

  5. J. F. Gouyet, M. Plapp, W. Dieterich, and P. Maass, Description of far-from-equilibrium processes by mean-field lattice gas models, Adv. Phys. 52: 523–638 (2003).

    Article  ADS  Google Scholar 

  6. A. R. Kerstein, Computational study of propagating fronts in a lattice-gas model, J. Stat. Phys. 45(5–6): 921–931 (1986).

    Article  Google Scholar 

  7. A. Kolmogorov, I. Petrovsky and N. Piscounov, Etude de liequation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Moscow Univ. Bull. Math. 1: 1–25 (1937).

    Google Scholar 

  8. P. K. Maini, D. L. S. McElwain and D. Leavesley, Travelling waves in a wound healing assay, Appl. Math. Lett. 17(5): 575–580 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Moro, Internal fluctuations effects on Fisher waves, Phys. Rev. Lett. 87(23): 238303 (2001).

    Article  ADS  Google Scholar 

  10. J. D. Murray, Mathematical Biology. (Springer, New York 2002).

    MATH  Google Scholar 

  11. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev. 65: 117–149 (1944).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. M. Plapp and J. F. Gouyet, Interface dynamics in a mean-field lattice gas model: Solute trapping, kinetic coefficient, and interface mobility, Phys. Rev. E 55(5): 5321–5337 (1997).

    Article  ADS  Google Scholar 

  13. H. Sheardown and Y. L. Cheng, Mechanisms of corneal epithelial wound healing, Chem. Eng. Sci. 51(19): 4517–4529 (1996).

    Article  Google Scholar 

  14. J. A. Sherratt and J. D. Murray, Models of epidermal wound-healing, Proc. R. Soc. London Ser. B Biol. Sci. 241(1300): 29–36 (1990).

    Article  ADS  Google Scholar 

  15. J. A. Sherratt and J. C. Dallon, Theoretical models of wound healing: past successes and future challenges, C.R. Biol. 325(5): 557–564 (2002).

    Article  Google Scholar 

  16. D. C. Walker, G. Hill, S. M. Wood, R. H. Smallwood and J. Southgate, Agent-based computational modeling of wounded epithelial cell monolayers, IEEE Tran. Nanobiosci. 3(3): 153–163 (2004).

    Article  Google Scholar 

  17. D. C. Walker, J. Southgate, G. Hill, A. Holcombe, D. R. Hose, S. M. Wood, S. Mac Neil and R. H. Smallwood, The epitheliome: agent-based modelling of the social behaviour of cells, Biosystems 76(1–3): 89–100 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We consider as an example the experiment of Sheardown and Cheng(13) on the wounding of rabbit corneas. It was shown in Ref. 2 that the typical ratio of proliferation rate and basic diffusion rate is of the order of 3 × 10−4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khain, E., Sander, L.M. & Schneider-Mizell, C.M. The Role of Cell-Cell Adhesion in Wound Healing. J Stat Phys 128, 209–218 (2007). https://doi.org/10.1007/s10955-006-9194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9194-8

Keywords

Navigation