Skip to main content
Log in

Rigorous Inequalities Between Length and Time Scales in Glassy Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Glassy systems are characterized by an extremely sluggish dynamics without any simple sign of long range order. It is a debated question whether a correct description of such phenomenon requires the emergence of a large correlation length. We prove rigorous bounds between length and time scales implying the growth of a properly defined length when the relaxation time increases. Our results are valid in a rather general setting, which covers finite-dimensional and mean field systems.

As an illustration, we discuss the Glauber (heat bath) dynamics of p-spin glass models on random regular graphs. We present the first proof that a model of this type undergoes a purely dynamical phase transition not accompanied by any thermodynamic singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Barrat, M. Feigelman, J. Kurchan and J. Dalibard, (eds.) Slow Relaxations and Non-quilibrium Dynamics in Condensed Matter, Proceedings of the LXXVII Les Houches Summer School (Springer, Berlin, 2003).

    Google Scholar 

  2. J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan and M. Mézard, Out of equilibrium dynamics in spin glasses and other glassy systems, in A. P. Young (ed.) Spin Glasses and Random Fields (World Scientific, Singapore, 1997).

    Google Scholar 

  3. C. Donati, S. C. Glotzer and P. H. Poole Phys. Rev. Lett. 82:5064 (1999).

    Article  ADS  Google Scholar 

  4. C. Bennemann, C. Donati, J. Baschnagel and S. C. Glotzer Nature 399:246 (1999).

    Article  ADS  Google Scholar 

  5. S. Franz and G. Parisi J. Phys: Condens. Matter 12:6335 (2000).

    Article  ADS  Google Scholar 

  6. C. Donati, S. Franz, S. C. Glotzer and G. Parisi J. Non-Cryst. Sol. 307–310:215 (2002).

    Article  Google Scholar 

  7. E. Weeks, J. C. Crocker, A. C. Levitt, A. Schfield and D. A. Weitz Science 287:627 (2000).

    Article  ADS  Google Scholar 

  8. J.-P. Bouchaud and G. Biroli Europhys. Lett. 67:21 (2004).

    Article  ADS  Google Scholar 

  9. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L'HÔte, F. Ladieu and M. Pierno Science 310:1797 (2005).

    Article  ADS  Google Scholar 

  10. G. Biroli and J.-P. Bouchaud J. Chem. Phys. 121:7347 (2004).

    Article  ADS  Google Scholar 

  11. R. Mulet, A. Pagnani, M. Weigt and R. Zecchina Phys. Rev. Lett. 89:268701 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Mézard, G. Parisi and R. Zecchina Science 297:812 (2002).

    Article  ADS  Google Scholar 

  13. N. Berger, C. Kenyon, E. Mossel and Y. Peres Prob. Theory Rel. Fields 131:311 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Martinelli, A. Sinclair and D. Weitz Comm. Math. Phys. 250:301 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. A. Guionnet and B. Zegarlinski, Lectures on logarithmic sobolev inequalities. Séminaire de Probabilites de Strasbourg 36:1 (2002).

    Google Scholar 

  16. F. Martinelli, Lectures on Glauber dynamics for discrete spin models, in Lectures on probability theory and statistics, Saint-Flour 1997 (Springer, Berlin, 1999).

    Google Scholar 

  17. M. Dyer, A. Sinclair, E. Vigoda and D. Weitz Rand. Struc. Alg. 24:461 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. F. R. Kschischang, B. J. Frey and H.-.A. Loeliger IEEE Trans. Inform. Theory 47:498 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Aldous and J. A. Fill Reversible Markov Chains and Random Walks on Graphs, book in preparation. Draft available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html.

  20. A. Montanari and G. Semerjian Phys. Rev. Lett. 94:247201 (2005).

    Article  ADS  Google Scholar 

  21. A. Montanari and G. Semerjian, On the dynamics of the glass transition on Bethe lattices, cond-mat/0509366 J. Stat. Phys. 124(1):103 (2006).

    Google Scholar 

  22. T. M. Cover and J. A. Thomas Elements of Information Theory (Wiley Interscience, New York, 1991).

    MATH  Google Scholar 

  23. S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt and R. Zecchina, Europhys. Lett. 55:465 (2001).

    Article  ADS  Google Scholar 

  24. S. Franz and G. Parisi, J. Phys. I (France) 5:1401 (1995).

    Article  Google Scholar 

  25. S. Franz, Europhys. Lett. 73:492 (2006).

    Article  ADS  Google Scholar 

  26. A. Montanari and C. Toninelli, unpublished.

  27. M. Mézard and A. Montanari, Reconstruction on trees and spin glass transition, cond-mat/0512295.

  28. A. Billoire, L. Giomi and E. Marinari, Europhys. Lett. 71:824 (2005).

    Article  ADS  Google Scholar 

  29. J. van den Berg, Comm. Math. Phys. 152:161 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. T. P. Hayes and A. Sinclair, A general lower bound for mixing of single site dynamics on graphs, FOCS 2005 and math.PR/0507517.

  31. A. L. Gibbs and F. E. Su, Inter. Stat. Rev. 70:419 (2002).

    Article  MATH  Google Scholar 

  32. E. Mossel, Ann. Appl. Probab. 11:285 (2001).

    MATH  MathSciNet  Google Scholar 

  33. R. L. Dobrushin, Theory Prob. Appl. 13:197 (1968).

    Article  Google Scholar 

  34. H. O. Georgii, Gibbs Measures and Phase Transitions (de Gruyter, Berlin, 1988).

    MATH  Google Scholar 

  35. D. Weitz, Rand. Struc. Alg. 27:445 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  36. R. Bubley and M. Dyer, Proceedings of the 38th Symposium on the Foundations of Computer Science, IEEE, 223 (1997).

  37. M. Talagrand, Spin Glasses: Cavity and Mean Field Models (Springer, New York, 2003).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Montanari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montanari, A., Semerjian, G. Rigorous Inequalities Between Length and Time Scales in Glassy Systems. J Stat Phys 125, 23–54 (2006). https://doi.org/10.1007/s10955-006-9175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9175-y

Key words

Navigation