Skip to main content
Log in

Finite-Size Scaling in the Energy-Entropy Plane for the 2D ± Ising Spin Glass

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For L × L square lattices with L ≤ 20 the 2D Ising spin glass with +1 and −1 bonds is found to have a strong correlation between the energy and the entropy of its ground states. A fit to the data gives the result that each additional broken bond in the ground state of a particular sample of random bonds increases the ground state degeneracy by approximately a factor of 10/3. For x=0.5 (where x is the fraction of negative bonds), over this range of L, the characteristic entropy defined by the energy-entropy correlation scales with size as L 1.78(2). Anomalous scaling is not found for the characteristic energy, which essentially scales as L 2. When x=0.25, a crossover to L 2 scaling of the entropy is seen near L=12. The results found here suggest a natural mechanism for the unusual behavior of the low temperature specific heat of this model, and illustrate the dangers of extrapolating from small L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).

    Article  ADS  Google Scholar 

  2. J. A. Blackman and J. Poulter, Phys. Rev. B 44, 4374 (1991).

    Article  ADS  Google Scholar 

  3. J. A. Blackman, J. R. Goncalves and J. Poulter, Phys. Rev. E 58, 1502 (1998).

    Article  ADS  Google Scholar 

  4. J. Houdayer, Eur. Phys. J. B 22, 479 (2001).

    Article  ADS  Google Scholar 

  5. A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 180404(R) (2001).

    ADS  Google Scholar 

  6. J. Lukic, A. Galluccio, E. Marinari, O. C. Martin and G. Rinaldi, Phys. Rev. Lett. 92, 117202 (2004).

    Article  ADS  Google Scholar 

  7. I. A. Campbell, A. K. Hartmann and H. G. Katzgraber, Phys. Rev. B 70, 054429 (2004).

    Article  ADS  Google Scholar 

  8. L. Saul and M. Kardar, Phys. Rev. E 48, R3221 (1993).

    Article  ADS  Google Scholar 

  9. L. Saul and M. Kardar, Nucl. Phys. B 432, 641 (1994).

    Article  ADS  Google Scholar 

  10. T. Shirakura and F. Matsubara, J. Phys. Soc. Jpn. 65, 3138 (1996).

    Article  ADS  Google Scholar 

  11. F. Matsubara, T. Shirakura and M. Shiomi, Phys. Rev. B 58, R11821 (1998).

    Article  ADS  Google Scholar 

  12. M. Shiomi, F. Matsubara and T. Shirakura, J. Phys. Soc. Jpn. 69, 2798 (2000).

    Article  ADS  Google Scholar 

  13. N. Hatano and J. E. Gubernatis, Phys. Rev. B 66, 54437 (2002).

    Article  ADS  Google Scholar 

  14. R. Fisch, Phys. Rev. B 51, 11507 (1995).

    Article  ADS  Google Scholar 

  15. J. W. Landry and S. N. Coppersmith, Phys. Rev. B 65, 134404 (2001).

    Article  ADS  Google Scholar 

  16. J.-S. Wang and R. H. Swendsen, Phys. Rev. B 38, 4840 (1988).

    Article  ADS  Google Scholar 

  17. C. Amoruso and A. K. Hartmann, Phys. Rev. B 70, 134425 (2004).

    Article  ADS  Google Scholar 

  18. J. W. Tukey, Biometrics 7, 33 (1951).

    Article  Google Scholar 

  19. A. Madansky, J. Am. Stat. Assoc. 54, 173 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Galluccio, M. Loebl and J. Vondrák, Phys. Rev. Lett. 84, 5924 (2000).

    Article  ADS  Google Scholar 

  21. H. G. Katzgraber and L. W. Lee, Phys. Rev. B 71, 134404 (2005).

    Article  ADS  Google Scholar 

  22. H. G. Katzgraber, L. W. Lee and I. A. Campbell, cond-mat/0510668.

  23. J.-S. Wang, Phys. Rev. E 72, 036706 (2005).

    Article  ADS  Google Scholar 

  24. J. Poulter and J. A. Blackman, J. Phys. A 34, 7527 (2001).

    Article  MATH  ADS  Google Scholar 

  25. C. Amoruso, E. Marinari, O. C. Martin and A. Pagnani, Phys. Rev. Lett. 91, 087201 (2003).

    Article  ADS  Google Scholar 

  26. C. Wang, J. Harrington and J. Preskill, Ann. Phys. (N.Y.) 303, 31 (2003).

    Article  MATH  ADS  Google Scholar 

  27. F. Merz and J. T. Chalker, Phys. Rev. B 66, 054413 (2002).

    Article  ADS  Google Scholar 

  28. R. Fisch, cond-mat/0508468.

  29. R. Fisch and A. K. Hartmann, cond-mat/0603729.

  30. G. Parisi, Phys. Rev. Lett. 50, 1946 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Palassini, M. Sales and F. Ritort, Phys. Rev. B 68, 224430 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Fisch.

Additional information

PACS numbers: 75.10.Nr, 75.40.Mg, 75.50.Lk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisch, R. Finite-Size Scaling in the Energy-Entropy Plane for the 2D ± Ising Spin Glass. J Stat Phys 125, 777–792 (2006). https://doi.org/10.1007/s10955-006-9164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9164-1

Keywords

Navigation