Skip to main content

Advertisement

Log in

Neutral Community Theory: How Stochasticity and Dispersal-Limitation Can Explain Species Coexistence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Neutral community theory explains biodiversity, i.e. the coexistence of several species, as the result of a stochastic balance between immigration and extinction on a local level, and between speciation and extinction on a regional level. The most popular model, presented by Hubbell in 2001, has seen many analytical developments in recent years, which can be used in model analysis, model testing and model comparison. We review these developments here, and present alternative derivations and shine previously unnoticed lights on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Abrams, The theory of limiting similarity. Ann. Rev. Ecol. Syst. 14:359–376 (1983).

    Article  Google Scholar 

  2. D. Alonso, The Stochastic Nature of Ecological Interactions. Communities, Metapopulations, and Epidemics. Polytechnical University of Catalonia, Spain. PhD. thesis (2004).

  3. D. Alonso and A. J. McKane, Sampling Hubbell’s neutral theory of biodiversity. Ecol. Lett. 7:901–910 (2004).

    Article  Google Scholar 

  4. D. Alonso, R. S. Etienne and A. J. McKane, The merits of neutral theory. Trends in Ecol. Evol. 21:451–457 (2006).

    Google Scholar 

  5. J. R. Banavar, J. L. Green, J. Harte and A. Maritan, Finite size scaling in ecology. Phys. Rev. Lett. 83:4212 (1999).

    Article  ADS  Google Scholar 

  6. J. Bascompte and R. V. Solé, eds., Modeling Spatiotemporal Dynamics in Ecology, Berlin, Germany: Springer and Landes Bioscience (1997).

    Google Scholar 

  7. G. Bell, Neutral macroecology. Science 293:2413–2418 (2001).

    Article  ADS  Google Scholar 

  8. G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, U. K.: Cambridge University Press (2004).

    MATH  Google Scholar 

  9. M. Bramson, J. T. Cox and R. Durrett, A spatial model for the abundance of species. Ann. Probability 26:658–709 (1997).

    MathSciNet  Google Scholar 

  10. H. Caswell, Community structure: A neutral model analysis. Ecol. Monogr. 46:327–354 (1976).

    Article  Google Scholar 

  11. J. Chave, Neutral theory and community ecology. Ecol. Lett. 7:241–253 (2004).

    Article  ADS  Google Scholar 

  12. J. Chave and E. G. Leigh, A spatially explicit neutral model of β -diversity in tropical forests. Theor. Popul. Biol. 62:153–168 (2002).

    Article  MATH  Google Scholar 

  13. J. Chave, D. Alonso and R. S. Etienne, Comparing models of species abundance. Nature 441:E1 (2006).

    Google Scholar 

  14. P. L. Chesson, Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Systematics 31:343–366 (2000).

    Article  Google Scholar 

  15. P. L. Chesson and R. R. Warner, Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 125:923–943 (1981).

    Article  MathSciNet  Google Scholar 

  16. F. E. Clements, Plant Succession: An Analysis of the Development of Vegetation. Washington, DC: Carnegie Institute of Washington Publication, p. 242, (1916).

    Google Scholar 

  17. J. E. Cohen and C. M. Newman, A stochastic theory of community food webs: I. Models and aggregated data. Proc. R. Soc. Lond. B 224:421–448 (1985).

    Google Scholar 

  18. R. Condit, N. Pitman, E. G. Leigh, J. Chave, J. Terborgh, R. B. Foster, P. Nuñez, S. Aguilar, R. Valencia, G. Villa, H. C. Muller-Landau, E. Losos and S. P. Hubbell, Beta-diversity in tropical forest trees. Science 295:666–669 (2002).

    Article  ADS  Google Scholar 

  19. D. Costantini and U. Garibaldi, The Ehrenfest fleas: from model to theory. Synthese 139:107–142 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. K. Dewdney, A general theory of the sampling process with applications to the “veil line.” Theor. Popul. Biol. 54:294–302 (1998).

    Article  MATH  Google Scholar 

  21. A. K. Dewdney, A dynamical model of communities and a new species-abundance distribution. Biol. Bull. 35:152–165 (2000).

    Article  Google Scholar 

  22. O. H. Diserud and S. Engen, A general and dynamic species abundance model, embracing the lognormal and the gamma models. Am. Nat. 155:497–511 (2000).

    Article  Google Scholar 

  23. M. Dornelas, S. R. Connolly and T. P. Hughes, Coral reef diversity refutes the neutral theory of biodiversity. Nature 440:80–82 (2006).

    Article  ADS  Google Scholar 

  24. R. Durrett, Stochastic spatial models. SIAM Rev. 41:677–718 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Durrett and S. Levin, Spatial models for species-area curves. J. Theor. Biol. 179:119–127 (1996).

    Article  Google Scholar 

  26. C. Elton, Animal Ecology. London, U. K.: Sidgewick & Jackson (1927).

    Google Scholar 

  27. S. Engen and R. Lande, Population dynamic models generating the lognormal species abundance distribution. Math. Biosci. 132:169–183 (1996a).

    Article  MATH  Google Scholar 

  28. S. Engen and R. Lande, Population dynamic models generating the species abundance distributions of the Gamma type. J. Theor. Biol. 178:325–331 (1996b).

    Article  Google Scholar 

  29. R. S. Etienne, A new sampling formula for neutral biodiversity. Ecol. Lett. 8:253–260 (2005).

    Article  Google Scholar 

  30. R. S. Etienne and D. Alonso, A dispersal-limited sampling theory for species and alleles. Ecol. Lett. 8:1147–1156 (2005). Erratum in Ecol. Lett. 9:500.

    Google Scholar 

  31. R. S. Etienne and H. Olff, How dispersal limitation shapes species—body size distributions in local communities. Am. Nat. 163:69–83 (2004a).

    Article  Google Scholar 

  32. R. S. Etienne and H. Olff, A novel genealogical approach to neutral biodiversity theory. Ecol. Lett. 7:170–175 (2004b).

    Article  Google Scholar 

  33. R. S. Etienne and H. Olff, Confronting different models of community structure to species-abundance data: a Bayesian model comparison. Ecol. Lett. 8:493–504 (2005).

    Article  Google Scholar 

  34. R. S. Etienne, A. M. Latimer, J. A. Silander and R. M. Cowling, Comment on “Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot.” Science 311:610b (2006).

    Article  Google Scholar 

  35. W. J. Ewens, The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3:87–112 (1972).

    Article  MathSciNet  Google Scholar 

  36. T. Fagerström, Lotteries in communities of sessile organisms. Trends in Ecol. Evol. 3:303–306 (1988).

    Article  Google Scholar 

  37. R. A. Fisher, The Genetical Theory of Natural Selection. Oxford, U. K.: Clarendon Press (1930).

    MATH  Google Scholar 

  38. R. A. Fisher, A. S. Corbet and C. B. Williams, The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12:42–58 (1943).

    Article  Google Scholar 

  39. G. F. Gause, The Struggle for Existence. Baltimore, MD: Williams and Wilkins (1934).

    Google Scholar 

  40. H. A. Gleason, The individualistic concept of the plant association. Bull. Torrey Botanical Club 53:7–26 (1926).

    Article  Google Scholar 

  41. H. A. Gleason, The individualistic concept of the plant association. Am. Midland Nat. 21:92–110 (1939).

    Article  Google Scholar 

  42. N. J. Gotelli, Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621 (2000).

    Article  Google Scholar 

  43. D. Gravel, C. D. Canham, M. Beaudet and C. Messier, Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9:399–409 (2006).

    Google Scholar 

  44. R. C. Griffiths and S. Lessard, Ewens’ sampling formula and related formulae: Combinatorial proofs, extensions to variable population size and applications to ages of alleles. Theor. Popul. Biol. 68:167–177 (2005).

    Article  MATH  Google Scholar 

  45. J. Grinnell, The niche-relationships of the California Thrasher. Auk 34:427–433 (1917).

    Google Scholar 

  46. J. Grinnell, On the role of the accidental. Auk 39:373–380 (1922).

    Google Scholar 

  47. J. Harte, Tail of death and resurrection. Nature 424:1006–1007 (2003).

    Article  ADS  Google Scholar 

  48. F. L. He, Deriving a neutral model of species abundance from fundamental mechanisms of population dynamics. Funct. Ecol. 19:187–193 (2005).

    Article  Google Scholar 

  49. F. He and S. P. Hubbell, Percolation theory for the distribution and abundance of species. Phys. Rev. Lett. 91:198103 (2003).

    Article  ADS  Google Scholar 

  50. B. Houchmandzadeh and M. Vallade, Clustering in neutral ecology. Phys. Rev. E 68:061912 (2003).

    Article  ADS  Google Scholar 

  51. X.-S. Hu and F. He, Neutral theory in macroecology and population genetics. Oikos in press (2006).

  52. X.-S. Hu, F. He and S. P. Hubbell, Neutral theory in macroecology and population genetics. Oikos 113: 548–556 (2006).

    Google Scholar 

  53. S. P. Hubbell, The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, NJ: Princeton University Press (2001).

    Google Scholar 

  54. G. E. Hutchinson, Concluding remarks. Cold Spring Harbor Symp. Quant. Biol. 22:415–427 (1957).

  55. G. E. Hutchinson, The paradox of the plankton. Am. Nat. 95:137–145 (1961).

    Article  Google Scholar 

  56. N. L. Johnson, S. Kotz and N. Balakrishnan, Discrete Multivariate Distributions. New York, NY: Wiley (1997).

    MATH  Google Scholar 

  57. S. Karlin and J. McGregor, Addendum to a paper of W. Ewens. Theor. Popul. Biol. 3:113–116 (1972).

  58. M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge, U. K.: Cambridge University Press (1983).

    Google Scholar 

  59. J. M. Kneitel and J. M. Chase, Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol. Lett. 7:69–80 (2004).

    Article  Google Scholar 

  60. R. Lande, S. Engen and B.-E. Saether, Stochastic Population Dynamics in Ecology and Conservation. Oxford Series in Ecology and Evolution. Oxford, U. K.: Oxford University Press (2003).

  61. S. A. Levin, Complex adaptive systems: exploring the known, the unknown, and the unknowable. Bull. Am. Math. Soc. 40:3–19 (2003).

    Article  MATH  Google Scholar 

  62. R. H. MacArthur, On the relative abundance of bird species. Proc. Natl. Acad. Sci., USA 43:293–295 (1957).

    Article  ADS  Google Scholar 

  63. R. H. MacArthur, On the relative abundance of species. Am. Nat. 94:25–36 (1960).

    Article  Google Scholar 

  64. R. H. MacArthur and E. O. Wilson, Island Biogeography. Princeton, NJ: Princeton University Press (1967).

    Google Scholar 

  65. R. Margalef, Through the looking glass: how marine phytoplankton appears through the microscope when graded by size and taxonomically sorted. Scientia Marina 58:87–101 (1994).

    Google Scholar 

  66. P. A. Marquet, J. E. Keymer and H. Cofré, Breaking the stick in space: of niche models, metacommunities and patters of relative abundance of species. in T. M. Blackburn & K. J. Gaston, eds. Macroecology. Concepts and consequences. Oxford, U. K.: Blackwell, pp. 64–84 (2003).

  67. B. J. McGill, A test of the unified neutral theory of biodiversity. Nature 422:881–885 (2003a).

    Article  ADS  Google Scholar 

  68. B. J. McGill, Strong and weak tests of macroecological theory. Oikos 102:679–685 (2003b).

    Article  Google Scholar 

  69. A. J. McKane, D. Alonso and R. V. Solé, A mean field stochastic theory for species rich assembled communities. Phys. Rev. E 62:8466–8484 (2000).

    Article  ADS  Google Scholar 

  70. A. J. McKane, D. Alonso and R. V. Solé, Analytic solution of Hubbell’s model of local community dynamics. Theor. Popul. Biol. 65:67–73 (2004).

    Article  MATH  Google Scholar 

  71. L. R. Moore, G. Rocap and S. W. Chisholm, Physiology and molecular phylogeny of coexisting prochlorococcus ecotypes. Nature 393:464–467 (1998).

    Article  ADS  Google Scholar 

  72. P. A. P. Moran, Random processes in genetics. Proc. Cambridge Philos. Soc. 54:60–71 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  73. P. A. P. Moran, Statistical Processes of Evolutionary Theory. Oxford, U. K.: Clarendon Press (1962).

    MATH  Google Scholar 

  74. N. Mouquet and M. Loreau, Coexistence in metacommunities: the regional similarity hypothesis. Am. Nat. 159:420–426 (2002).

    Google Scholar 

  75. S. Nee, The neutral theory of biodiversity: do the numbers add up? Funct. Ecol. 19:173–176 (2005).

    Article  Google Scholar 

  76. F. W. Preston, The commonness and rarity of species. Ecology 29:254–283 (1948).

    Article  Google Scholar 

  77. S. Pueyo, Diversity: between neutrality and structure. Oikos 112:392–405 (2006).

    Article  Google Scholar 

  78. G. Sella and A. E. Hirsh, The application of statistical physics to evolutionary biology. Proc. Natl. Acad. Sci., USA 102:9541–9546 (2005).

    Article  ADS  Google Scholar 

  79. G. Sugihara, Minimal community structure: an explanation of species-abundance patterns. Am. Nat. 116:770–787 (1980).

    Article  MathSciNet  Google Scholar 

  80. R. Johnson and C. Townsend, A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J. Anim. Ecol. 75:476–484 (2006).

    Article  Google Scholar 

  81. D. Tilman and S. Pacala, The maintenance of species richness in plant communities. in: Species Diversity in Ecological Communities; Historical and Geographic Perspectives, R. E. Ricklefs and D. Schluter, eds. Chicago, IL: University of Chicago Press, pp. 13–25 (1993).

  82. R. Thompson and C. Townsend, A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J. Anim. Ecol. 75:476–484 (2006).

    Article  Google Scholar 

  83. D. Tilman, Diversity by default. Science 283:495–496 (1999).

    Article  Google Scholar 

  84. C. S. Ting, G. Rocap, J. King and S. W. Chisholm, Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends in Microbiol. 10:134–142 (2002).

    Google Scholar 

  85. M. Tokeshi, Niche apportionment or random assortment—species abundance patterns revisited. J. Anim. Ecol. 59:1129–1146 (1990).

    Article  Google Scholar 

  86. M. Tokeshi, Species abundance patterns and community structure. Adv. Ecol. Res. 24:111–186 (1993).

    Article  Google Scholar 

  87. M. Tokeshi, Power fraction: a new explanation of relative abundance patterns in species-rich assemblages. Oikos 75:543–550 (1996).

    Article  Google Scholar 

  88. M. Vallade and B. Houchmandzadeh, Analytical solution of a neutral model of biodiversity. Phys. Rev. E 68:061902 (2003).

    Article  ADS  Google Scholar 

  89. T. Vicsek, Fluctuations and Scaling in Biology. Oxford, U. K.: Oxford University Press (2001).

    Google Scholar 

  90. I. Volkov, J. R. Banavar, S. P. Hubbell and A. Maritan, Neutral theory and relative species abundance in ecology. Nature 424:1035–1037 (2003).

    Article  ADS  Google Scholar 

  91. I. Volkov, J. R. Banavar, S. P. Hubbell and A. Maritan, Organization of ecosystems in the vicinity of a novel phase transition. Phys. Rev. Lett. 92:218703 (2004).

    Google Scholar 

  92. I. Volkov, J. R. Banavar, F. He, S. P. Hubbell and A. Maritan, Density dependence explains tree species abundance and diversity in tropical forests. Nature 438:658–661 (2005).

    Article  ADS  Google Scholar 

  93. J. Wakeley, Coalescent Theory. An Introduction. Greenwood Village, CO: Roberts & Co (2004).

  94. G. A. Watterson, Models for the logarithmic species abundance distribution. Theor. Popul. Biol. 6:217–250 (1974).

    Article  MathSciNet  Google Scholar 

  95. R. H. Whittaker, A consideration of climax theory: the climax as a population and pattern. Ecol. Monogr. 23:41–78 (1953).

    Article  Google Scholar 

  96. R. J. Williams and N. D. Martinez, Simple rules yield complex food webs. Nature 404:180–183 (2000).

    Article  ADS  Google Scholar 

  97. S. Wright, Evolution in Mendelian populations. Genetics 16:97–159 (1931).

    Google Scholar 

  98. D. W. Yu, J. W. Terborgh and M. D. Potts, Can high tree species richness be explained by Hubbell’s null model? Ecol. Lett. 1:193–199 (1998).

    Article  Google Scholar 

  99. T. Zillio, I. Volkov, J. R. Banavar, S. P. Hubbell and A. Maritan, Spatial scaling in model plant communities. Phys. Rev. Lett. 95:098101 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rampal S. Etienne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etienne, R.S., Alonso, D. Neutral Community Theory: How Stochasticity and Dispersal-Limitation Can Explain Species Coexistence. J Stat Phys 128, 485–510 (2007). https://doi.org/10.1007/s10955-006-9163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9163-2

Keywords

Navigation