Skip to main content
Log in

Linear One-Step Processes with Artificial Boundaries

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An artificial absorbing boundary is introduced in a linear birth and death stochastic process in order to understand the long time behavior of an ecological community. The solution is obtained by means of a spectral resolution of the probability distribution. A more general linear process with a coefficient of arbitrary strength near the boundary both with absorbing and with reflecting boundary conditions is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, Elsevier (2004).

  2. W. Feller, An Introduction to Probability Theory and its Applications, Vol. I, Wiley, NJ (1968).

  3. C. A. Condat, Defect diffusion and closed-time distributions for ionic channels in cell membranes. Phys. Rev. A 39:2112–2125 (1989).

    Article  ADS  Google Scholar 

  4. N. G. van Kampen and I. Oppenheim, Expansion of the master equation for one-dimensional random walks with boundary. J. Math. Phys. 13:842–849 (1972).

    Article  MATH  ADS  Google Scholar 

  5. D. R. Cox and W. L. Smith, Queues, Methuen, New York (1961).

  6. S. Karlin and J. McGregor, Linear growth, birth and death processes. J. Math. Mech. 7:643–661 (1958).

    Google Scholar 

  7. S. Karlin and J. McGregor, The classification of birth and death processes. Trans. Amer. Math. Soc. 86:366–401 (1957).

    Google Scholar 

  8. S. Karlin and J. McGregor, The differential equations of birth and death processes and the stieltjes moment problem. Trans. Amer. Math. Soc. 86:489–546 (1957).

    Google Scholar 

  9. M. E. H. Ismail, J. Letessier and G. Valent, Linear birth and death models and associated laguerre and meixner polynomials. J. of Approx. Th. 55:337–348 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. P. Hubbell, The Unified Neutral Theory of Biodiversity and Biogeography, Princeton University Press, NJ (2001).

  11. I. Volkov, J. R. Banavar, S. P. Hubbell and A. Maritan, Neutral theory and relative species abundance in ecology. Nature 424:1035–1037 (2003).

    Article  ADS  Google Scholar 

  12. I. Volkov, J. R. Banavar, F. He, S. P. Hubbell and A. Maritan, Density dependence explains tree species abundance and diversity in tropical forests. Nature 438:658–661 (2005).

    Article  ADS  Google Scholar 

  13. S. Pigolotti, A. Flammini and A. Maritan, Stochastic model for the species abundance problem in an ecological community. Phys. Rev. E 70:011916 (2004).

    Google Scholar 

  14. S. Karlin and H. Taylor, A First Course in Stochastic Processes, Academic Press (1975).

  15. W. Feller, Two singular diffusion problems. Ann. of Math. 54:173–182 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Ledermann and G. E. H. Reuter, Spectral theory for the differential equations of simple birth and death processes. Phil. Trans. Royal Soc. Lon. A 246:321–369 (1954).

    Google Scholar 

  17. R. C. F. Bartels and R. V. Churchill, Resolution of boundary problems by the use of a generalized convolution. Bull. Am. Math. Soc. 48:276–282 (1942).

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Courant and D. Hilbert, Methods of Mathematical Physics, Wiley (1989).

  19. I. N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill (1957).

  20. F. G. Tricomi, Integral Equations, Dover (1985).

  21. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions. Nat. Bur. of Stand. (1964).

  22. N. N. Lebedev, Special Functions and their Applications, Dover (1972).

  23. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon & Breach, New York (1978).

  24. A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Trascendental Functions, Vol. II, McGraw-Hill, New York (1953).

  25. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press (1963).

  26. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azaele, S., Volkov, I., Banavar, J.R. et al. Linear One-Step Processes with Artificial Boundaries. J Stat Phys 125, 491–511 (2006). https://doi.org/10.1007/s10955-006-9158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9158-z

Key Words

Navigation