Skip to main content
Log in

Extensions of Lieb’s Concavity Theorem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The operator function (A,B)→ Trf(A,B)(K *)K, defined in pairs of bounded self-adjoint operators in the domain of a function f of two real variables, is convex for every Hilbert Schmidt operator K, if and only if f is operator convex. We obtain, as a special case, a new proof of Lieb’s concavity theorem for the function (A,B)→ TrA p K * B q K, where p and q are non-negative numbers with sum p+q ≤ 1. In addition, we prove concavity of the operator function

$$(A,B)\to Tr\left[\frac{A}{A+\mu_1}K^*\frac{X1B}{B+\mu_2}K\right]$$

in its natural domain D 212), cf. Definition 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ando, Topics on Operator Inequalities (Sapporo, 1978. Unpublished notes).

  2. T. Ando, Concavity of certain maps of positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26:203–241 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Bendat and S. Sherman, Monotone and convex operator functions. Trans. Amer. Math. Soc. 79:58–71 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Bhatia. Matrix analysis (New York, Springer, 1997).

    Google Scholar 

  5. M. Sh. Birman and M. Z. Solomyak, Notes on the function of spectral shift. Zap. Nauchn. Semin. LOMI 27:33–46 (1972). (Russian).

  6. M. Sh. Birman and M. Z. Solomyak, Double Stieltjes operator integrals, III. Problems of Math. Physics, no. 6, pp. 27–53, (1973). (Russian).

  7. H. Epstein, Remarks on two theorems of E. Lieb. Comm. Math. Phys. 31:317–325 (1973).

  8. T. M. Flett, Differential Analysis (Cambridge, Cambridge University Press, 1980).

  9. F. Hansen, Operator convex functions of several variables. Publ. RIMS, Kyoto Univ. 33:443–463 (1997).

  10. F. Hansen, Operator inequalities associated with Jensen’s inequality. In: T. M. Rassias (edr.), Survey on Classical Inequalities (Kluwer Academic Publishers, 2000) pp. 67–98.

  11. F. Hansen, Operator monotone functions of several variables. Math. Ineq. Appl. 6:1–17 (2003).

    MATH  Google Scholar 

  12. F. Hansen, Characterization of symmetric monotone metrics on the the state space of quantum systems. arXiv:math-ph/0601056 v3, pp. 1–12, 2006. To appear in Quantum Information and Computation.

  13. F. Hansen, Trace functions as Laplace transforms. J. Math. Phys. 47:(043504) 1–11 (2006).

    Google Scholar 

  14. F. Hansen and J. Tomiyama, Differential analysis of matrix convex functions. arXiv:math. OA/0601290 v1, pp. 1–17, (2006). To appear in Linear Algebra Appl.

  15. F. Hiai and H. Kosaki, Means of Hilbert space operators. Lecture Notes in Mathematics. (Berlin, Springer, 2003).

  16. A. Korányi, On some classes of analytic functions of several variables. Trans Amer. Math. Soc. 101:520–554 (1961).

    Google Scholar 

  17. F. Kubo and T. Ando, Means of positive linear operators. Math. Ann. 246:205–224 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture. Advances in Math. 11:267–288 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  19. E. H. Lieb and M. B. Ruskai, Some operator inequalities of the Schwarz type. Adv. in Math. 12:269–273 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  20. N. E. Nörlund, Vorlesungen Über Differenzenrechnung (Berlin, Springer Verlag, 1924).

  21. M. Ohya and D. Petz, Quantum Entropy and its Use (Heidelberg, Springer Verlag, 1993).

  22. G. K. Pedersen, Some operator monotone functions. Proc. Amer. Math. Soc. 36:309–310 (1972).

    Google Scholar 

  23. W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8:159–170 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  24. M. B. Ruskai. Lieb’s simple proof of concavity of (A,B)→Tr A p K B 1−p K and remarks on related inequalities. arXiv:quant-ph/0404126 v3, pp. 1–14, (2005).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, F. Extensions of Lieb’s Concavity Theorem. J Stat Phys 124, 87–101 (2006). https://doi.org/10.1007/s10955-006-9155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9155-2

Keywords

Navigation