Skip to main content
Log in

Nonuniversality in Low-Volume-Fraction Ostwald Ripening

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study Ostwald ripening in the regime of small volume fraction and consider spatially periodic systems whose size is smaller than the screening length. Within the snapshot perspective we obtain an explicit characterization of the leading-order deviation to the classical mean-field theory by Lifshitz, Slyozov and Wagner (LSW). Using this representation, we show that the corrections are not universal, in the sense that the mean value has a strong dependence on geometry, and arbitrarily large fluctuations can happen with finite probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alikakos and G. Fusco, The equations of Ostwald ripening for dilute systems. J. Stat. Phys. 95:851–866 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alikakos and G. Fusco, Ostwald ripening for dilute systems under quasistationary dynamics. Comm. Math. Phys. 238:429–479 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. V. E. Fradkov, M. E. Glicksman and S.P. Marsh, Coarsening kinetics in finite clusters. Phys. Rev. E 53:3925–3932 (1996).

    Article  ADS  Google Scholar 

  4. S. C. Hardy and P. W. Voorhees, Ostwald ripening in a system with a high volume fraction of coarsening phase. Met. Trans. A 19A:2713–2721 (1988).

    Article  Google Scholar 

  5. A. Hönig, B. Niethammer and F. Otto, On first order corrections to the LSW theory I: Infinite systems. J. Stat. Phys. 119(1/2):61–122 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Hönig, B. Niethammer and F. Otto, On first order corrections to the LSW theory II: finite systems. J. Stat. Phys. 119(1/2):123–164 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. O. Kallenberg, Foundations of modern probability. Springer Verlag (1997).

  8. I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19:35–50 (1961).

    Article  ADS  Google Scholar 

  9. H. Mandyam, M. E. Glicksman, J. Helsing and S. P. Marsh, Statistical simulations of diffusional coarsening in finite clusters. Phys. Rev. E 58:2119–2130 (1998).

    Article  ADS  Google Scholar 

  10. P. W. Voorhees, The theory of Ostwald ripening. J. Stat. Phys. 38:231–252 (1985).

    Article  ADS  Google Scholar 

  11. P. W. Voorhees, Ostwald ripening of two-phase mixtures. Ann. Rev. Mater. Sci. 22:197–215 (1992).

    Article  Google Scholar 

  12. C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen. Z. Elektrochemie 65:581–594 (1961).

    Google Scholar 

  13. J. Weins and J. C. Cahn, The effect of size and distribution of second phase particles and voids on sintering. In E.E.G.C. Kuczynski (Ed.), Sintering and related phenomena page 151. Plenum, London (1973).

Download references

Author information

Authors and Affiliations

Authors

Additional information

AMS Subject classification: 35B27, 74N20, 82C26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, S., Hönig, A., Niethammer, B. et al. Nonuniversality in Low-Volume-Fraction Ostwald Ripening. J Stat Phys 124, 231–259 (2006). https://doi.org/10.1007/s10955-006-9154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9154-3

Keywords

Navigation