Skip to main content
Log in

Anderson Localization, Non-linearity and Stable Genetic Diversity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasi-species, unless the mutation rate is too high, in which case the asymptotic population becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random fitness term in the linear model produces features analogous to Anderson localization. When coupled with density dependent non-linearities, which limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abou-Chacra, P. W. Anderson and D. J. Thouless, A self consistent theory of localization. J. Phys.C: Solid St. Phys. 6:1734–1752, (1973).

    Article  ADS  Google Scholar 

  2. P. W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109:1492–1505, (1958).

    Article  ADS  Google Scholar 

  3. P. W. Anderson, Suggested model for prebiotic evolution: The use of chaos. Proc. Natl. Acad. Sci. 80:3386–3390, (1983).

    Google Scholar 

  4. E. Baake, M. Baake and H. Wagner, Ising quantum chain is equivalent to a model of biological evolution. Phys. Rev. Lett. 78:559–562, (1997).

    Article  ADS  Google Scholar 

  5. R. Carmona and J. Lascoux, Spectral Theory of Random Schrödinger Operators, (Birkhäuser, Boston-Basel-Berlin, 1990).

    MATH  Google Scholar 

  6. S. S. Chow, C. O. Wilke, C. Ofria, R. E. Lenski and C. Adami, Adaptive radiation from resource competition in digital organisms. Science 305:84–86, (2004).

    Article  ADS  Google Scholar 

  7. J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory, (Harper and Row, New York, 1970).

    MATH  Google Scholar 

  8. M. Eigen, Molekulare Selbstorganisation und Evolution (Self organization of matter and the evolution of biological macro molecules.). Naturwissenshaften 58:465–523, (1971).

    Article  ADS  Google Scholar 

  9. M. Eigen, J. McCaskill and P. Schuster, Molecular quasi-species. J. Phys. Chem. 92:6881–6891, (1988).

    Article  Google Scholar 

  10. M. Eigen, J. McCaskill and P. Schuster, The molecular quasi-species. Adv. Chem. Phys. 75:149–263, (1989).

    Article  Google Scholar 

  11. M. Eigen and P. Schuster, A principle of natural self-organization. Part A. emergence of the hyper cycle. Naturwissenschaften 64:541–565, (1977).

    Article  ADS  Google Scholar 

  12. J. Hermisson, H. Wagner and M. Baake, Four-state quantum chain as a model for sequence evolution. J. Stat. Phys. 102:315–343, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Jain and J. Krug, Adaptation in simple and complex fitness landscapes. arXiv:q-bio, PE/0508008 v1:1–42, (2005).

  14. J. McCaskill, A localization threshold for macromolecular quasi-species from continuously distributed replication rates. J. Chem. Phys. 80:5194–5202, (1984).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. R. Nelson and N. M. Shnerb, Non-Hermitian localization and population biology. Phys. Rev. E 58:1383, (1998).

    Article  ADS  MathSciNet  Google Scholar 

  16. J.-M. Park and M. W. Deem, Schwinger Boson formulation and solution of the Crow-Kimura and Eigen models of quasispecies theory, submitted. J. Stat. Phys. 1–33, (2006).

  17. L. A. Pastur and A. Figot, Spectra of Random and Almost Periodic Operators, (Springer Verlag, Berlin-Heidelberg-New York, 1992).

    MATH  Google Scholar 

  18. P. B. Rainey and M. Travisano, Adaptive radiation in a heterogeneous environment. Nature 394:69–72, (1998).

    Article  ADS  Google Scholar 

  19. M. Reed and B. Simon, Methods of Modern Mathematical Physics VI: Analysis of Operators, (Academic Press, New York-San Francisco-London, 1978).

    MATH  Google Scholar 

  20. D. B. Saakian, E. Muñoz, C.-K. Hu, and M. W. Deem, Quasispecies theory for multiple-peak fitness landscapes. Phys. Rev. E 73:041913-1–10, (2006).

    Google Scholar 

  21. M. E. Taylor, Partial Differential Equations, Vol. 3, vol. 117 of Applied Mathematical Sciences, (Springer, New York, 1996).

    Google Scholar 

  22. D. J. Thouless, Anderson’s theory of localized states. J. Phys.C: Solid St. Phys. 3:1559–1566, (1970).

    Article  ADS  Google Scholar 

  23. H. Wagner, E. Baake and T. Gerisch Ising quantum chain and sequence evolution. J. Stat. Phys. 92:1017–1052, (1998).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by DARPA under the FUNBIO program and the Francis J. Carey Term Chair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, C.L. Anderson Localization, Non-linearity and Stable Genetic Diversity. J Stat Phys 124, 25–46 (2006). https://doi.org/10.1007/s10955-006-9149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9149-0

Keywords

Navigation