Skip to main content
Log in

Suspension Flows Over Countable Markov Shifts

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of topological pressure for suspension flows over countable Markov shifts, and we develop the associated thermodynamic formalism. In particular, we establish a variational principle for the topological pressure, and an approximation property in terms of the pressure on compact invariant sets. As an application we present a multifractal analysis for the entropy spectrum of Birkhoff averages for suspension flows over countable Markov shifts. The domain of the spectrum may be unbounded and the spectrum may not be analytic. We provide explicit examples where this happens. We also discuss the existence of full measures on the level sets of the multifractal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Barreira, L. Radu and C. Wolf, Dimension of measures for suspension flows. Dyn. Syst. 19: 89–107 (2004).

    MATH  MathSciNet  Google Scholar 

  2. L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows. Comm. Math. Phys. 214: 339–371 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. L. Barreira and B. Saussol, Variational principles for hyperbolic flows, in Differential Equations and Dynamical Systems (Lisboa, 2000), Eds. A. Galves, J. Hale and C. Rocha, Fields Inst. Comm. 31. Amer. Math. Soc. pp. 43–63 (2002).

  4. L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116: 29–70 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Bowen, Symbolic dynamics for hyperbolic flows. Amer. J. Math. 95: 429–460 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29: 181–202 (1975).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. R. Bowen and P. Walters, Expansive one-parameter flows. J. Differential Equations 12: 180–193 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps. Ergodic Theory Dynam. Systems 23: 1383–1400 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Gurevich and S. Katok, Arithmetic coding and entropy for the positive geodesic flow on the modular surface. Mosc. Math. J. 1: 569–582 (2001).

    MATH  MathSciNet  Google Scholar 

  10. G. Iommi, Multifractal analysis for countable Markov shifts. Ergodic Theory Dynam. Systems, 25: 1881–1907 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet. Israel J. Math. 125: 93–130 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolics Dynamics. Astérisque 187–188 (1990).

  13. Ya. Pesin and V. Sadovskaya, Multifractal analysis of conformal axiom A flows. Comm. Math. Phys. 216: 277–312 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds. Israel J. Math. 15: 92–114 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  15. O. Sarig, Thermodynamic formalism for countable Markov shifts. Ergodic Theory Dynam. Systems 19: 1565–1593 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  16. O. Sarig, Existence of Gibbs measures for countable Markov shifts. Proc. Amer. Math. Soc. 131: 1751–1758 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Savchenko, Special flows constructed from countable topological Markov chains. Funct. Anal. Appl. 32: 32–41 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Schmeling, On the completeness of multifractal spectra. Ergodic Theory Dynam. Systems 19: 1595–1616 (1999).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Barreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreira, L., Iommi, G. Suspension Flows Over Countable Markov Shifts. J Stat Phys 124, 207–230 (2006). https://doi.org/10.1007/s10955-006-9140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9140-9

Navigation