Skip to main content
Log in

Euler Integrals for Commuting SLEs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Schramm-Loewner Evolutions (SLEs) have proved an efficient way to describe a single continuous random conformally invariant interface in a simply-connected planar domain; the admissible probability distributions are parameterized by a single positive parameter κ. As shown in, Ref. 8 the coexistence of n interfaces in such a domain implies algebraic (“commutation”) conditions. In the most interesting situations, the admissible laws on systems of n interfaces are parameterized by κ and the solution of a particular (finite rank) holonomic system.

The study of solutions of differential systems, in particular their global behaviour, often involves the use of integral representations. In the present article, we provide Euler integral representations for solutions of holonomic systems arising from SLE commutation. Applications to critical percolation (general crossing formulae), Loop-Erased Random Walks (direct derivation of Fomin’s formulae in the scaling limit), and Uniform Spanning Trees are discussed. The connection with conformal restriction and Poissonized non-intersection for chordal SLEs is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Appell and J. Kampé de Fériet. Fonctions hypergéometriques et hypersphériques. Polynômes d’Hermite. (Gauthier-Villars, Paris, 1926).

  2. F. Camia and C. M. Newman. The full scaling limit of two-dimensional critical percolation. preprint, arXiv:math.PR/0504036.

  3. J. L. Cardy. Critical percolation in finite geometries. J. Phys. A 25(4):L201–L206 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. J. L. Cardy. Conformal invariance and percolation. preprint, arXiv:math-ph/0103018 (2001).

  5. J. L. Cardy. Crossing formulae for critical percolation in an annulus. J. Phys. A 35(41):L565–L572 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Di Francesco, P. Mathieu and D. Sénéchal. Conformal field theory. Graduate Texts in Contemporary Physics. (Springer-Verlag, New York, 1997).

    Google Scholar 

  7. V. S. Dotsenko and V. A. Fateev. Conformal algebra and multipoint correlation functions in 2D statistical models. Nuclear Phys. B 240(3):312–348 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Dubédat. Commutation relations for SLE. preprint, arXiv:math.PR/0411299 (2004).

  9. J. Dubédat. Excursion decompositions for SLE and Watts’ crossing formula. Probab. Theory Related Fields, to appear, http://dx.doi.org/10.1007/s00440-005-0446-3, (2004).

  10. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Higher transcendental functions. Vol. I. Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman.

  11. H. M. Farkas and I. Kra. Riemann surfaces, volume 71 of Graduate Texts in Mathematics. 2nd edn. (Springer-Verlag, New York, 1992).

  12. S. Fomin. Loop-erased walks and total positivity. Trans. Amer. Math. Soc. 353(9):3563–3583 (electronic) (2001).

    Google Scholar 

  13. R. Friedrich and J. Kalkkinen. On conformal field theory and stochastic Loewner evolution. Nuclear Phys. B 687(3):279–302 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. G. Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften. 2nd edn. (Springer-Verlag, Berlin, 1999).

    Google Scholar 

  15. M. J. Kozdron and G. F. Lawler. Estimates of random walk exit probabilities and application to loop-erased random walk. Electron. J. Probab. 10:1442–1467 (electronic) (2005).

    Google Scholar 

  16. G. Lawler, O. Schramm and W. Werner. Conformal restriction: the chordal case. J. Amer. Math. Soc. 16(4):917–955 (electronic) (2003).

  17. G. F. Lawler. The Laplacian-b random walk and the Schramm-Loewner evolution. Illinois J. Math., to appear.

  18. G. F. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. (American Mathematical Society, Providence, RI, 2005).

  19. G. F. Lawler, O. Schramm and W. Werner. On the scaling limit of planar self-avoiding walk. In Fractal geometry and application. A jubilee of Benoit Mandelbrot, AMS Proc. Symp. Pure Math. 2002.

  20. G. F. Lawler, O. Schramm and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B):939–995 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  21. G. F. Lawler and W. Werner. The Brownian loop soup. Probab. Theory Related Fields 128(4):565–588 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  22. H. T. Pinson. Critical percolation on the torus. J. Statist. Phys. 75(5–6):1167–1177 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. S. Rohde and O. Schramm. Basic properties of SLE. Ann. of Math. (2) 161(2):883–924 (2005).

    Google Scholar 

  24. M. Saito, B. Sturmfels, and N. Takayama. Gröbner deformations of hypergeometric differential equations, volume 6 of Algorithms and Computation in Mathematics. (Springer-Verlag, Berlin, 2000).

  25. O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118:221–288 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3):239–244 (2001).

    MATH  Google Scholar 

  27. G. M. T. Watts. A crossing probability for critical percolation in two dimensions. J. Phys. A 29(14):L363–L368 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. W. Werner. Random planar curves and Schramm-Loewner evolutions. In Lectures on probability theory and statistics, volume 1840 of Lecture Notes in Math., pp. 107–195. Springer, Berlin, 2004.

  29. W. Werner. Conformal restriction and related questions. Probab. Surv. 2:145–190 (electronic) (2005).

    Google Scholar 

  30. D. B. Wilson. Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 296–303, New York, 1996. ACM.

  31. M. Yoshida. Fuchsian differential equations. Aspects of Mathematics, E11. Friedr. Vieweg & Sohn, Braunschweig, 1987. With special emphasis on the Gauss-Schwarz theory.

  32. D. Zhan. Random Loewner chains in Riemann surfaces. PhD thesis (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Dubédat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubédat, J. Euler Integrals for Commuting SLEs. J Stat Phys 123, 1183–1218 (2006). https://doi.org/10.1007/s10955-006-9132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9132-9

Keywords

Navigation