Skip to main content
Log in

Hierarchical Characterization of Complex Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

While the majority of approaches to the characterization of complex networks has relied on measurements considering only the immediate neighborhood of each network node, valuable information about the network topological properties can be obtained by considering further neighborhoods. The current work considers the concept of virtual hierarchies established around each node and the respectively defined hierarchical node degree and clustering coefficient (introduced in cond-mat/0408076), complemented by new hierarchical measurements, in order to obtain a powerful set of topological features of complex networks. The interpretation of such measurements is discussed, including an analytical study of the hierarchical node degree for random networks, and the potential of the suggested measurements for the characterization of complex networks is illustrated with respect to simulations of random, scale-free and regular network models as well as real data (airports, proteins and word associations). The enhanced characterization of the connectivity provided by the set of hierarchical measurements also allows the use of agglomerative clustering methods in order to obtain taxonomies of relationships between nodes in a network, a possibility which is also illustrated in the current article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. J. Newman, SIAM Rev. 45:167–256 (2003).

    Article  MathSciNet  Google Scholar 

  2. A.-L. Barabási and R. Albert, Science 509 (1999).

  3. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74:47–97 (2002).

    Article  ADS  Google Scholar 

  4. P. J. Flory, J. Am. Chem. Soc. 63:3083, 3091, 3096 (1941).

    Article  Google Scholar 

  5. A. Rapoport, Bull. Math. Bioph. 19:257–277 (1957).

    Article  MathSciNet  Google Scholar 

  6. P. Erdös and A. Rényi, Publ. Math. 6:290–297 (1959).

    Google Scholar 

  7. D. J. Watts and S. H. Strogatz, Nature 393: 440–442 (1998).

    Article  ADS  Google Scholar 

  8. D. J. Watts, Small Worlds, Princeton Studies in Complexity (Princeton University Press, 1999).

  9. R. Albert, H. Jeong, and A. L. Barabási, Nature 401:130, cond-mat/9907038 (1999).

    Article  ADS  Google Scholar 

  10. L. daF. Costa, Phys. Rev. Lett. 93:098702 (2004).

    Article  ADS  Google Scholar 

  11. L. daF. Costa and L. E. C. da Rocha, Eur. Phys. J. B 50:237–242, cond-mat/0408076 (2006).

    Article  ADS  Google Scholar 

  12. E. Ravasz and A. L. Barabási, Phys. Rev. E 67:026112, cond-mat/0206130 (2003).

    Article  ADS  Google Scholar 

  13. E. Ravasz, A. L. Somera, A. Mongru, Z. N. Oltvai, and A. L. Barabási, Science 297:1551–1555 cond-mat/0209244 (2002),.

    Article  ADS  Google Scholar 

  14. G. Caldarelli, R. Pastor-Satorras, and A. Vespignani, cond-mat/0212026 (2003).

  15. A. L. Barabási, Z. Deszo, E. Ravasz, S.-H. Yook, and Z. Oltvai, Sitges Proceedings on Complex Networks (2004).

  16. A. Trusina, S. Maslov, P. Minnhagen, and K. Sneppen, Phys. Rev. Lett. 92:178702 (2004), cond-mat/0308339 (2003).

    Article  ADS  Google Scholar 

  17. M. Boss, H. Elsinger, M. Summer, and S. Thurner, Santa Fe Institute Working Paper No. 03-10-054, Accepted for Quant. Finance, cond-mat/0309582 (2003).

  18. M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, cond-mat/0311501 (2003).

  19. H. Zhou, Phys. Rev. E 67:061901 (2003).

    Article  ADS  Google Scholar 

  20. A. Vázquez, Phys. Rev. E 67:056104 (2003).

    Article  ADS  Google Scholar 

  21. M. Steyvers and J. B. Tenenbaum, To appear in Cognitive Science, cond-mat/0212026 (2003).

  22. V. Gold’shtein, G. A. Koganov, and G.I. Surdutovich, cond-mat/0409298 (2004).

  23. R. Cohen, S. Havlin, S. Mokryn, D. Dolev, T. Kalisky, and Y. Shavitt, cond-mat/0305582(2003).

  24. M. E. Newman, cond-mat/0111070 (2001).

  25. M. E. J. Newman and D. J. Watts, Phys. Rev. E 60:7332–7342 (1999).

    Article  ADS  Google Scholar 

  26. S. Wuchty and E. Almaas, BMC Evol. Biol. 5:24 (2005).

    Article  Google Scholar 

  27. E. R. Dougherty and R. A. Lotufo, Hands-on Morphological Image Processing (SPIE Press, 2003).

  28. L. Vincent, Signal Proc. 16:365–388 (1989).

    Article  MathSciNet  Google Scholar 

  29. H. J. A. M. Heijmans, P. Nacken, A. Toet, and L. Vincent, J. Vis. Comm. and Image Repr. 3:24–38 (1992).

    Article  Google Scholar 

  30. L. daF. Costa, q.bio.MN/0405028 (2004).

  31. L. daF. Costa, q.bio.TO/0412042 (2004).

  32. L. daF. Costa, cond-mat/0405022 (2004).

  33. J. P. Bagrow and E. M. Bollt, cond-mat/0412482 (2004).

  34. L. d. Costa, and R. M. Cesar, Shape Analysis and Classification: Theory and Practice, 1st ed. (CRC Press, Inc., 2000)

  35. R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. (John Wiley, New York, 2001).

    MATH  Google Scholar 

  36. A. C. Zorach and R. E. Ulanowicz, Complexity, 8(3):68–76 (2003).

    Article  MathSciNet  Google Scholar 

  37. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (The MIT Press, 2002).

  38. B. Bollobás, Random Graphs (Academic Press, London, 1985).

    MATH  Google Scholar 

  39. G. R. Kiss, C. Armstrong, R. Milroy, and J. Piper, An associative thesaurus of English and its computer analysis, in The Computer and Literary Studies. A. J. Aitken, R. W. Bailey, and N. Hamilton-Smith, eds. (University Press, Edinburgh, 1973).

    Google Scholar 

  40. USAir97, Pajek Package for Large Network Analysis http://vlado.fmf.uni-lj.si/pub/networks/pajek /data/gphs.htm.

  41. S. Sun, L. Ling, N. Zhang, G. Li, and R. Chen, Topological structure analysis of the protein-protein interaction network in budding yeast. Nucl. Acids Res. 31(9), 2443–2450 (2003).

    Article  Google Scholar 

  42. L. daF. Costa, Intl. J. Mod. Phys. C 15:371–379 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano da Fontoura Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Fontoura Costa, L., Silva, F.N. Hierarchical Characterization of Complex Networks. J Stat Phys 125, 841–872 (2006). https://doi.org/10.1007/s10955-006-9130-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9130-y

Keywords

Navigation