Skip to main content
Log in

Renormalization of a Hard-Core Guest Charge Immersed in a Two-Dimensional Electrolyte

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is a continuation of a previous one [L. Šamaj, J. Stat. Phys. 120:125 (2005)] dealing with the renormalization of a guest charge immersed in a two-dimensional logarithmic Coulomb gas of pointlike ± unit charges, the latter system being in the stability-against-collapse regime of reduced inverse temperatures 0 ≤ β < 2. In the previous work, using a sine-Gordon representation of the Coulomb gas, an exact renormalized-charge formula was derived for the special case of the pointlike guest charge Q, in its stability regime β |Q| < 2. In the present paper, we extend the renormalized-charge treatment to the guest charge with a hard core of radius σ, which allows us to go beyond the stability border β|Q| = 2. In the limit of the hard-core radius much smaller than the correlation length of the Coulomb-gas species and at a strictly finite temperature, due to the counterion condensation in the extended region β|Q| > 2, the renormalized charge Q ren turns out to be a periodic function of the bare charge Q with period 1. The renormalized charge therefore does not saturate at a specific finite value as |Q| →∞, but oscillates between two extreme values. In the high-temperature Poisson-Boltzmann scaling regime of limits β→ 0 and Q→∞ with the product β Q being finite, one reproduces the Manning-Oosawa type of counterion condensation with the uniform saturation of β Q ren at the value 4/π in the region β|Q| ≥ 2. The obtained results disprove the “regularization hypothesis” of the previous work about the possibility of an analytic continuation of the formula for Q ren from the stability region β |Q| < 2 to β |Q| ≥ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, and P. Pincus, J. Chem. Phys. 80:5776 (1984).

    Article  ADS  Google Scholar 

  2. H. Löwen, J. Chem. Phys. 100:6738 (1994).

    Article  ADS  Google Scholar 

  3. L. Belloni, Colloids Surfaces A 140:227 (1998).

    Article  Google Scholar 

  4. Y. Levin, Rep. Prog. Phys. 65:1577 (2002).

    Article  ADS  Google Scholar 

  5. E. Trizac, L. Bocquet, and M. Aubouy, Phys. Rev. Lett. 89:248301 (2002).

    Article  ADS  Google Scholar 

  6. M. Aubouy, E. Trizac, and L. Bocquet, J. Phys. A: Math. Gen. 36:5835 (2003).

    Article  ADS  Google Scholar 

  7. G. Téllez and E. Trizac, Phys. Rev. E 68:061401 (2003).

    Article  ADS  Google Scholar 

  8. L. Šamaj, J. Stat. Phys. 119:459 (2005).

    Article  MathSciNet  Google Scholar 

  9. T. Kennedy, Comm. Math. Phys. 92:269 (1983).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. T. Kennedy, J. Stat. Phys. 37:529 (1984).

    Article  Google Scholar 

  11. R. D. Groot, J. Chem. Phys. 95:9191 (1991).

    Article  ADS  Google Scholar 

  12. M. C. Barbosa, M. Deserno, and C. Holm, Europhys. Lett. 52:80 (2000).

    Article  ADS  Google Scholar 

  13. L. Šamaj, J. Phys. A: Math. Gen. 36:5913 (2003).

    Article  ADS  Google Scholar 

  14. L. Šamaj, J. Stat. Phys. 120:125 (2005).

    Article  MathSciNet  Google Scholar 

  15. A. Diehl and Y. Levin, J. Chem. Phys. 121:12100 (2004).

    Article  ADS  Google Scholar 

  16. G. Téllez, J. Stat. Phys. 122:787 (2006).

    Article  MATH  Google Scholar 

  17. C. A. Tracy and H. Widom, Comm. Math. Phys. 190:697 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. G. S. Manning, J. Chem. Phys. 51:924 (1969).

    Article  Google Scholar 

  19. F. Oosawa, Polyelectrolytes (Dekker, New York, 1971).

  20. P. Kalinay and L. Šamaj, J. Stat. Phys. 106:857 (2002).

    Article  MATH  Google Scholar 

  21. E. H. Lieb and J. L. Lebowitz, Adv. Math. 9:316 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Minnhagen, Rev. Mod. Phys. 59:1001 (1987).

    Article  ADS  Google Scholar 

  23. A. Zamolodchikov and Al. Zamolodchikov, Ann. Phys. (N.Y.) 120:253 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Lukyanov and Al. Zamolodchikov, Nucl. Phys. B 493:571 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. C. Destri and H. de Vega, Nucl. Phys. B 358:251 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  26. Al. Zamolodchikov, Int. J. Mod. Phys. A 10:1125 (1995).

    Article  ADS  Google Scholar 

  27. L. Šamaj and I. Travěnec, J. Stat. Phys. 101:713 (2000).

    Article  Google Scholar 

  28. K. Wilson, Phys. Rev. 179:1499 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  29. V. Fateev, D. Fradkin, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Nucl. Phys. B 540:587 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. G. Téllez, J. Stat. Mech. P10001 (2005).

  31. Vl. S. Dotsenko and V. A. Fateev, Nucl. Phys. B 240:312 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. Vl. S. Dotsenko and V. A. Fateev, Nucl. Phys. B 251:691 (1985).

    ADS  MathSciNet  Google Scholar 

  33. F. A. Smirnov, Form-Factors in Completely Integrable Models of Quantum Field Theory (World Scientific, Singapore, 1992).

  34. S. Lukyanov, Mod. Phys. Lett. A 12:2543 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. S. Lukyanov, Phys. Lett. B 408:192 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. V. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Phys. Lett. B 406:83 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  37. V. Fateev, S. Lukyanov, A. Zamolodchikov, and Al. Zamolodchikov, Nucl. Phys. B 516:652 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 5th ed. (Academic Press, London, 1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Šamaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šamaj, L. Renormalization of a Hard-Core Guest Charge Immersed in a Two-Dimensional Electrolyte. J Stat Phys 124, 1179–1206 (2006). https://doi.org/10.1007/s10955-006-9122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9122-y

Keywords

Navigation