Skip to main content
Log in

Principle of Maximum Entropy and Reduced Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new method to obtain a series of reduced dynamics at various stages of coarse-graining is proposed. This ranges from the most coarse-grained one which agrees with the deterministic time evolution equation for averages of the relevant variables to the least coarse-grained one which is the generalized Fokker-Planck equation for the probability distribution function of the relevant variables. The method is based on the extention of the Kawasaki-Gunton operator with the help of the principle of maximum entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Barrat and J.P. Hansen, Basic Concepts for Simple and Complex Liquids, Cambridge: {Cambridge} University Press (2003).

    Google Scholar 

  2. T.A. Witten, Structured Fluids, Oxford: Oxford University Press (2004).

    Google Scholar 

  3. R. Evans, Adv. Phys. 28:143 (1979).

    Article  ADS  Google Scholar 

  4. R. Evans, in Fundamentals of Inhomogeneous Fluids, ed. D. Henderson, New York: Dekker, chapter 3 (1992).

  5. U. M. B. Marconi and P. Tarazona, J. Chem. Phys. 110:8032 (1999).

    Article  ADS  Google Scholar 

  6. U. M. B. Marconi and P. Tarazona, J. Phys. Condens. Matter 12:A413 (2000).

    Article  ADS  Google Scholar 

  7. A. J. Archer and R. Evans, J. Chem. Phys. 121:4246 (2004).

    Article  ADS  Google Scholar 

  8. D. Reinel and W. Dieterich, J. Chem. Phys. 104:5234 (1996).

    Article  ADS  Google Scholar 

  9. H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer, and D. Reinel, J. Chem. Phys. 108:3028 (1998).

    Article  ADS  Google Scholar 

  10. M. Kessler, W. Dieterich, H. L. Frisch, J.-F. Gouyet, and P. Maass, cond-mat/0201456.

  11. D. S. Dean, J. Phys. A 29:L613 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Kawasaki, Physica A 208:35 (1994).

    Article  ADS  Google Scholar 

  13. A. Yoshimori, Phys. Rev. E 59:6535 (1999).

    Article  ADS  Google Scholar 

  14. A. Yoshimori, Phys. Rev. E 71:031203 (2005).

    Article  ADS  Google Scholar 

  15. H. Frukawa and R. Hayakawa, J. Phys. A 33:L135 (2000).

    Google Scholar 

  16. A. J. Archer and M. Rauscher, J. Phys. A 37:9325 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. K. Kawasaki, Physica A 362:249 (2006).

    Article  ADS  Google Scholar 

  18. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, London: Academic Press (1986)

    Google Scholar 

  19. D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Berlin: Akademie Verlag (1996)

  20. K. Kawasaki and J. D. Gunton, Phys. Rev. A 8:2048 (1973).

    Article  ADS  Google Scholar 

  21. E. Jaynes, Papers on Probability, Statistics, and Statistical Physics, ed. R. Rosenkrantz, D. Reidel Publishing Company (1983).

  22. P. Mazur, Physica A 261:451 (1998).

    Article  MathSciNet  Google Scholar 

  23. H. A. Kramers, Physica 7:284 (1940).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. S. P. Das and G. F. Mazenko, Phys. Rev. A 34:2265 (1986).

    Article  ADS  Google Scholar 

  25. R. Graham, in Functional Integration, eds. Antoine and Terapegui, New York: Plenum (1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyozi Kawasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawasaki, K. Principle of Maximum Entropy and Reduced Dynamics. J Stat Phys 123, 711–740 (2006). https://doi.org/10.1007/s10955-006-9121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9121-z

Keywords

Navigation