Skip to main content
Log in

A Simple Discrete Model of Brownian Motors: Time-periodic Markov Chains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider periodically inhomogeneous Markov chains, which can be regarded as a simple version of physical model—Brownian motors. We introduce for them the concepts of periodical reversibility, detailed balance, entropy production rate and circulation distribution. We prove the equivalence of the following statements: The time-periodic Markov chain is periodically reversible; It is in detailed balance; Kolmogorov's cycle condition is satisfied; Its entropy production rate vanishes; Every circuit and its reversed circuit have the same circulation weight. Hence, in our model of Markov chains, the directed transport phenomenon of Brownian motors, i.e. the existence of net circulation, can occur only in nonequilibrium and irreversible systems. Moreover, we verify the large deviation property and the Gallavotti-Cohen fluctuation theorem of sample entropy production rates of the Markov chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. D. Astumian, Thermodynamics and kinetics of a Brownian motor. Science 276:917–922 (1997).

    Article  Google Scholar 

  • R. D. Astumian and M. Bier, Fluctuation driven ratchets: Molecular motors. Phys. Rev. Lett. 72:1766–1769 (1994).

    Article  ADS  Google Scholar 

  • R. Benzi, A. Sutera and A. Vulpiani, The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14:L453–L457 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  • V. Berdichevsky, and M. Gitterman, Stochastic resonance and ratchets–new manifestations. Physica A 249:88–95 (1998).

    Article  Google Scholar 

  • R.N. Bhattacharya and E. C. Waymire, Stochastic processes with applications. New York: John Wiley & Sons, Inc. 1990.

    Google Scholar 

  • M. Bier, Brownian ratchets in physics and biology. Contemporary Phys. 38(6), 371–379 (1997).

    Article  ADS  Google Scholar 

  • R. Durrett, Probability: theory and examples. (2nd ed.) Belmont: Duxbury Press 1996.

    Google Scholar 

  • D. J. Evans, and D. J. Searles, Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50(2), 1645–1648 (1994).

    Article  ADS  Google Scholar 

  • D. J. Evans and D. J. Searles, The fluctuation theorem. Adv. Phys. 51(7), 1529–1585 (2002).

    Article  ADS  Google Scholar 

  • G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in stationary states. J. Statist. Phys. 80: 931–970 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998).

    Article  ADS  Google Scholar 

  • G. P. Harmer and D. Abbott, Game theory: Losing strategies can win by Parrondo's paradox. Nature 402:864 (1999).

    Article  ADS  Google Scholar 

  • G. P. Harmer, D. Abbott, P. G. Taylor and J. M. Parrondo, Parrondo's paradoxical games and the discrete Brownian ratchet. In Proc. 2nd Int. Conf. Unsolved Problems of Noise and Fluctuations (eds Abbott, D. and Kish, L. B.), 189–200; Melville, N.Y, American Institute of Physics 2000.

    Google Scholar 

  • H. Hasegawa, On the construction of a time-reversed Markoff process, Prog. Theor. Phys. 55:90–105 (1976); Variational principle for non-equilibrium states and the Onsager-Machlup formula, ibid. 56, 44–60 (1976); Thermodynamic properties of non-equilibrium states subject to Fokker-Planck equations, ibid. 57:1523–1537 (1977); Variational approach in studies with Fokker-Planck equations, ibid. 58, 128–146 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P. Imkeller and I. Pavlyukevich, Stochastic resonance in two-state Markov chains. Arch. Math. 77:107–115 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  • D. Q. Jiang, M. Qian and M. P. Qian, Entropy production and information gain in Axiom-A systems. Commun. Math. Phys. 214(2), 389–409 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Q. Jiang, M. Qian and M. P. Qian, Mathematical theory of nonequilibrium steady states - On the frontier of probability and dynamical systems. (Lect. Notes Math. 1833) Berlin: Springer-Verlag 2004.

    MATH  Google Scholar 

  • D. Q. Jiang, M. Qian and F. X. Zhang, Entropy production fluctuations of finite Markov chains. J. Math. Phys. 44(9), 4176–4188 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • F. Jülicher, A. Ajdari and J. Prost, Modeling molecular motors. Rev. Mod. Phys. 69(4), 1269–1281 (1997).

    Article  ADS  Google Scholar 

  • Kurchan, J, Fluctuation theorem for stochastic dynamics. J. Phys. A: Math. Gen. 31: 3719–3729 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lan, Y.Z, Concise lectures of advanced algebra. Peking University Press 2002

  • J. L. Lebowitz and H. Spohn, A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Statist. Phys. 95(1–2), 333–365 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  • M. O. Magnasco, Forced thermal ratchets. Phys. Rev. Lett. 71:1477–1481 (1993).

    Article  ADS  Google Scholar 

  • M. O. Magnasco, Molecular combustion motors. Phys. Rev. Lett. 72:2656–2659 (1994).

    Article  ADS  Google Scholar 

  • C. Nicolis, Stochastic aspects of climatic transitions—response to a periodic forcing. Tellus 34:1–9 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  • G. Nicolis and I. Prigogine, Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. New York: Wiley 1977.

    Google Scholar 

  • Qian, M.P. and Gong, G.L, Applied Stochastic Processes. Peking University Press 1998

  • M. P. Qian and M, Qian, Circulation for recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 59:203–210 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  • M. P. Qian and M. Qian, The entropy production and reversibility of Markov processes. Scinence Bulletin 30(3), 165–167 (1985).

    Google Scholar 

  • M. P. Qian, M. Qian and G. L. Gong, The reversibility and the entropy production of Markov processes. Contemp. Math. 118:255–261 (1991).

    MathSciNet  Google Scholar 

  • M. P. Qian, C. Qian and M. Qian, Circulations of Markov chains with continuous time and the probability interpretation of some determinants. Sci. Sinica (Series A) 27(5), 470–481 (1984).

    MATH  Google Scholar 

  • P. Reimann, Brownian motors: noisy transport far from equilibrium. Physics Reports 361:57–265 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics. J. Statist. Phys. 85(1–2), 1–23 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Schnakenberg, Network theory of microscopic and macroscopic behaviour of master equation systems. Rev. Modern Phys. 48(4), 571–585 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  • S. R. S. Varadhan, Large deviations and applications. Philadelphia: Society for Industrial and Applied Mathematics 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Quan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, H., Jiang, DQ. & Qian, M. A Simple Discrete Model of Brownian Motors: Time-periodic Markov Chains. J Stat Phys 123, 831–859 (2006). https://doi.org/10.1007/s10955-006-9099-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9099-6

Keywords

Navigation