Skip to main content
Log in

Quenched Averages for Self-Avoiding Walks and Polygons on Deterministic Fractals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study rooted self avoiding polygons and self avoiding walks on deterministic fractal lattices of finite ramification index. Different sites on such lattices are not equivalent, and the number of rooted open walks W n (S), and rooted self-avoiding polygons P n (S) of n steps depend on the root S. We use exact recursion equations on the fractal to determine the generating functions for P n (S), and W n(S) for an arbitrary point S on the lattice. These are used to compute the averages \(\langle P_{n}(S) \rangle\),\(\langle W_{n}(S) \rangle\),\(\langle \log P_{n}(S) \rangle\) and \(\langle \log W_{n}(S) \rangle\) over different positions of S. We find that the connectivity constant μ, and the radius of gyration exponent \(\nu\) are the same for the annealed and quenched averages. However, \(\langle \log P_{n}(S) \rangle \simeq n \log \mu + (\alpha_q - 2)\log n\), and \(\langle \log W_{n}(S) \rangle \simeq n \log \mu + (\gamma_q-1) log{n}\), where the exponents \(\alpha_q\) and \(\gamma_q\), take values different from the annealed case. These are expressed as the Lyapunov exponents of random product of finite-dimensional matrices. For the 3-simplex lattice, our numerical estimation gives \(\alpha_q \simeq 0.72837 \pm 0.00001;\) and \(\gamma_q \simeq 1.37501 \pm 0.00003\), to be compared with the known annealed values \(\alpha_a = 0.73421\) and \(\gamma_q = 1.37522\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Barat and B. K. Chakrabarti, Statistics of self-avoiding walk on random lattices. Phys. Rep. 258:377 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  2. B. K. Charabarti (ed.), Statistics of Linear Polymers in Disordered Media (Elsevier, Amsterdam, 2005).

  3. D. Dhar, Self-avoiding random walks:some exactly soluble cases, J. Math. Phys. 19:5–11 (1978).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. R. Rammal, G. Toulose and J. Vannimenus, J. Phys. (Paris) 45:389 (1984).

    Google Scholar 

  5. D. Dhar and Y. Singh, in Statistics of linear polymers in disordered media, B. K. Charabarti (ed.) (Elsevier, Amsterdam, 2005), p. 149. [cond-mat/0508330]

    Google Scholar 

  6. Mathematica Wolfram Research http://www.wolfram.com/

  7. F. D. A. Reis, Diffusion on regular random fractals, J. Phys. A: Math. Gen. 29:7803–7810 (1996).

    Article  MATH  ADS  Google Scholar 

  8. A. Ordemann, M. Porto and H. E. Roman, Self-avoiding walks on Sierpinski lattices in two and three dimensions, Phys. Rev. E 65:021107 (2002).

    Article  ADS  Google Scholar 

  9. For a mathematical derivation of the log-periodic oscillations in of the Taylor coefficients of functions satisfying functional equations similar to Eq. (28). see A. M. Odlyzko, Adv. Math. 44:180 (1982). See also, G. Paul, Phys. Rev. E59:4847 (1999); P. J. Grabner and W. Woess, Stochastic Processes and their Applications 69:127–138 (1997); B. Kron and E. Teufl, Transactions of the American Mathematical Society 356:393–414 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Gluzman and D. Sornette, Log-periodic route to fractal functions, Phys. Rev. E65:036142 (2002); D. Sornette, Discrete scale invariance and complex dimensions, Phys. Rep. 297:239–270 (1998).

    MathSciNet  ADS  Google Scholar 

  11. A. Crisanti, G. Paladin and A. Vulpiani, Products of Random Matrices in Statistical Physics, Springer Series in Solid State Science, Vol. 104 (Springer, Berlin, 1993).

    MATH  Google Scholar 

  12. A. Mukherjee, Topics in Products of Random Matrices (Narosa, New Delhi, 2000).

    Google Scholar 

  13. H. Furstenberg and H. Kesten, Ann. Math. Stat. 31:457 (1960).

    MATH  MathSciNet  Google Scholar 

  14. T. Halpin-Healy and Y. -C. Zhang, Kinetic roughening, stochastic growth, directed polymers and all that, Phys. Rep. 254:215 (1995).

    Article  ADS  Google Scholar 

  15. A. V. Izyumov and K. V. Samokhin, Field theory of self-avoiding walks in random media, J. Phys. A 32:7843 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. A. B. Harris, Phys. Rev. Lett. 63:2819 (1989).

    Article  ADS  Google Scholar 

  17. S. B. Lee and H. Nakanishi, Monte Carlo study of self-avoiding walks on a critical percolation cluster, Phys. Rev. B 39:9561 (1989); Self-avoiding walks on randomly diluted lattices, Phys. Rev. Lett. 61:2022 (1988).

    Article  ADS  Google Scholar 

  18. Y. Y. Goldschmidt and Y. Shiferaw, Localization of Polymers in Random Media: Analogy with Quantum Particles in Disorder, book chapter in “Statistics of Linear Polymers in Disordered Media,” edited by B.K. Chakrabarti, Elsevier 2005; also see other chapters in the book.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumedha, Dhar, D. Quenched Averages for Self-Avoiding Walks and Polygons on Deterministic Fractals. J Stat Phys 125, 55–76 (2006). https://doi.org/10.1007/s10955-006-9098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9098-7

Keywords

Navigation