Skip to main content
Log in

Gravitational Collapse and Ergodicity in Confined Gravitational Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The ergodic properties of many-body systems with repulsive-core interactions are the basis of classical statistical mechanics and are well established. This is not the case for systems of purely-attractive or gravitational particles. Here we consider two examples, (i) a family of one-dimensional systems with attractive power-law interactions, \(|x_i -x_j|^{\nu} \;, \; \nu > 0\), and (ii) a system of N gravitating particles confined to a finite compact domain. For (i) we deduce from the numerically-computed Lyapunov spectra that chaos, measured by the maximum Lyapunov exponent or by the Kolmogorov–Sinai entropy, increases linearly for positive and negative deviations of ν from the case of a non-chaotic harmonic chain (ν = 2). For \(2 < \nu \le 3\) there is numerical evidence for two additional hitherto unknown phase-space constraints. For the theoretical interpretation of model (ii) we assume ergodicity and show that for a small-enough system the reduction of the allowed phase space due to any other conserved quantity, in addition to the total energy, renders the system asymptotically stable. Without this additional dynamical constraint the particle collapse would continue forever. These predictions are supported by computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ehrenfest and T. Ehrenfest, The Conceptual Foundation of the Statistical Approach in Mechanics (Cornell University Press, Ithaca, 1959).

    Google Scholar 

  2. D. Szász, in Hard Ball Systems and the Lorentz Gas (Springer Verlag, Berlin, 2000).

  3. Y. G. Sinai, Russ. Math. Surv. 25(2):137 (1970).

    Google Scholar 

  4. See the review of N. Simányi in Ref. [2].

  5. V. Donnay, Ergodic Theory of Dynamical Systems 16:975 (1996).

    MATH  MathSciNet  Google Scholar 

  6. H. Narnhofer and W. Thirring, in Ergodic Properties of Quantum Field Theories in Mathematical Physics Towards the 21st Century, R. N. Sen and A. Gersten, eds. (Negev Press, 1994).

  7. M. K.-H. Kiessling, J. Stat. Phys. 55:203 (1989).

    Article  MathSciNet  Google Scholar 

  8. E. V. Votyakov, A. De Martino and D. H. E. Gross, Eur. Phys. J. B29:593 (2002).

    ADS  Google Scholar 

  9. L. Milanović, H. A. Posch and W. Thirring, Phys. Rev. E 57:2763 (1998).

    Article  ADS  Google Scholar 

  10. J. H. Oort, Bull. Astron. Inst. Netherlands 6:289 (1932).

    ADS  Google Scholar 

  11. G. L. Camm, Mon. Notices R. Astron. Soc. 110:305 (1950).

    MATH  MathSciNet  ADS  Google Scholar 

  12. G. B. Rybicki, Astrophys. Space Sci. 14:56 (1971).

    Article  ADS  Google Scholar 

  13. C. J. Reidl, Jr. and B. N. Miller, Phys. Rev. A 46:837 (1992).

    Article  PubMed  ADS  Google Scholar 

  14. C. J. Reidl, Jr. and B. N. Miller, Phys. Rev. E 48:4250 (1993).

    Article  ADS  Google Scholar 

  15. C. Dellago and H. A. Posch, Phys. Rev. E 55:R9 (1997).

    Article  ADS  Google Scholar 

  16. H. A. Posch and W. Thirring, J. Math. Phys. 41:3430 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. F. Calogero, J. Math. Phys. 12:419 (1971).

    Article  MathSciNet  Google Scholar 

  18. B. Sutherland, Phys. Rev. A 4:2019 (1971).

    Article  ADS  Google Scholar 

  19. D. Gómez-Ullate, A. González-López and M. A. Rodríguez, Phys. Lett. B 511:112 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G. Severne and M. Luwel, Astrophys. Space Sci. 122:299 (1986).

    Article  MATH  ADS  Google Scholar 

  21. F. Hohl and M. R. Feix, Astrophys. J. 167:1166 (1967).

    Google Scholar 

  22. L. Milanović, Simulation eindimensionaler Vielteilchensysteme mit rein anziehender Wechselwirkung, diploma thesis (University of Vienna, 1995).

  23. A. Noullez, D. Fanelli and E. Aurell, J. Computational Phys. 186:697 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. J. B. Pesin, Usp. Mat. Nauk. [Russ. Math. Surv.] 32(4):55 (1977).

    MATH  MathSciNet  Google Scholar 

  25. T. Tsuchiya, T. Konishi and N. Gouda, Phys. Rev. E 50:2607 (1994).

    Article  ADS  Google Scholar 

  26. T. Tsuchiya and N. Gouda, Phys. Rev. E 61:948 (2000).

    Article  ADS  Google Scholar 

  27. L. Milanović, H. A. Posch and W. G. Hoover, Molec. Phys. 95:281 (1998).

    Article  Google Scholar 

  28. C. Forster and H. A. Posch, Lyapunov modes in soft-disk fluids. New J. Phys. 7:32 (2005). arXive nlin.CD/0409019

    Google Scholar 

  29. G. Benettin, C. Froeschle and J. P. Scheidecker, Phys. Rev. A 19:2454 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  30. K. R. Yawn and B. N. Miller, Phys. Rev. E 68:056120 (2003).

    Article  ADS  Google Scholar 

  31. C. J. Reidl, Jr. and B. N. Miller, Phys. Rev. E 51:884 (1995).

    Article  ADS  Google Scholar 

  32. H. A. Posch and R. Hirschl, Simulation of Billiards and of Hard-Body Fluids, in Hard Ball Systems and the Lorenz Gas, Vol. 101, pp. 269–310. D. Szasz, ed. Encyclopedia of the mathematical sciences (Springer Verlag, Berlin 2000).

  33. L. Milanović and H. A. Posch, J. Molec. Liquids 96-97:221–244 (2002).

    Article  Google Scholar 

  34. C. Forster, R. Hirschl, H. A. Posch and W. G. Hoover, Phys. D 187:294 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. J.-P. Eckmann, C. Forster, H. A. Posch and E. Zabey, Lyapunov Modes in Hard-Disk Systems. J. Stat. Phys. 118:813 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  36. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Clifs, 1971).

    Google Scholar 

  37. C. P. Dettmann and G. P. Morriss, Phys. Rev. E 53:R5541 (1996).

    Article  ADS  Google Scholar 

  38. D. Ruelle, J. Stat. Phys. 95:393 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  39. D. J. Evans, E. G. D. Cohen and G. P. Morriss, Phys. Rev. A 42:5990 (1990).

    Article  PubMed  ADS  Google Scholar 

  40. F. Kuypers, Klassische Mechanik (Wiley-VCH Verlag, Weinheim, 2003).

    Google Scholar 

  41. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, 1998).

  42. P. P. Ewald, Ann. Phys. 64:253 (1921).

    MATH  Google Scholar 

  43. M. D. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

    MATH  Google Scholar 

  44. P. Kustaanheimo and E. Stiefel, J. Reine Angew. Math. 218:204 (1965).

    MATH  MathSciNet  Google Scholar 

  45. E. L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics (Springer-Verlag, Berlin, 1971).

    MATH  Google Scholar 

  46. S. Mikkola and S. J. Aarseth, Celestial Mech 57:439 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. J. Stoer and R. Bulirsch, Numerische Mathematik, vol. 2, (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  48. V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies (Academic Press, New York, 1967).

    Google Scholar 

  49. P. Klinko and B. N. Miller, Phys. Rev. Lett. 92:021102 (2004).

    Article  PubMed  ADS  Google Scholar 

  50. W. Thirring, A Course in Mathematical Physics Vol. 1: Classical Dynamical Systems (Springer, New York, 1978).

    Google Scholar 

  51. M. Bottaccio, A. Amici, P. Miocchi, R. Capuzzo Dolcetta, M. Montuori and L. Pietronero, Europhys. Lett. 57:315 (2002).

    Article  ADS  Google Scholar 

  52. I. Ispolatov and E. G. D. Cohen, Phys. Rev. Lett. 87:210601 (2004).

    Article  Google Scholar 

  53. P. Klinko and B. N. Miller, Phys. Lett. A 333:187 (2004).

    Article  ADS  Google Scholar 

  54. H. A. Posch, H. Narnhofer and W. Thirring, Phys. Rev. A 42:1880 (1990).

    Article  PubMed  MathSciNet  ADS  Google Scholar 

  55. W. Thirring, Classical Mathematical Physics: Dynamical Systems and Field Theories (Springer, New York, 1997).

    Google Scholar 

  56. P. Hertel and W. Thirring, Annals of Phys. 63:520 (1971).

    Article  ADS  Google Scholar 

  57. E. H. Lieb and W. Thirring, Annals of Phys. 155:494 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  58. E. H. Lieb and H. T. Yau, Commun. Math. Phys. 112:147 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. M. K.-H. Kiessling, How to Implement Boltzmann's Probabilistic Ideas in a Relativistic World?, in Chance in Physics: Foundations and Perspectives, Vol. 574, p. 83. J. Bricmont, D. D¨rr, M. C. Galavotti, G. Ghirardi, F. Petruccione and N. Zanghi, eds. Lecture Notes in Physics (Springer, Berlin, 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Posch.

Additional information

PACS numbers: 05.45.Pq, Numerical simulation of chaotic systems, 05.20.−y, Classical statistical mechanics, 36.40.Qv, Stability and fragmentation of clusters, 95.10.Fh, Chaotic dynamics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milanović, L., Posch, H.A. & Thirring, W. Gravitational Collapse and Ergodicity in Confined Gravitational Systems. J Stat Phys 124, 843–858 (2006). https://doi.org/10.1007/s10955-006-9095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9095-x

Keywords

Navigation