Skip to main content

Advertisement

Log in

Geometry and Elasticity of Strips and Flowers

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We solve several problems that involve imposing metrics on surfaces. The problem of a strip with a linear metric gradient is formulated in terms of a Lagrangian similar to those used for spin systems. We are able to show that the low energy state of long strips is a twisted helical state like a telephone cord. We then extend the techniques used in this solution to two–dimensional sheets with more general metrics. We find evolution equations and show that when they are not singular, a surface is determined by knowledge of its metric, and the shape of the surface along one line. Finally, we provide numerical evidence by minimizing a suitable energy functional that once these evolution equations become singular, either the surface is not differentiable, or else the metric deviates from the target metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1 K. Amano, Global isometric embedding of a Riemannian 2-manifold with nonnegative curvature into a Euclidean 3-space. Journal of Differential Geometry 34:49–83 (1991).

    MathSciNet  MATH  Google Scholar 

  2. 2 B. Audoly and A. Boudaoud, Rubaná Godets': an elastic model for ripples in plant leaves. Comptes Rendus Mecanique 330:1–6 (2002).

    Article  Google Scholar 

  3. 3 B. Audoly and A. Boudaoud, Self-similar structures near boundaries in strained systems. Physical Review Letters 91:086105/1–4 (2003).

    Article  ADS  Google Scholar 

  4. 4 D. Chapellet and K. J. Bathe, Fundamental considerations for the finite element analysis of shell structures. Computers and Structures 66:19–36 (1998).

    Article  Google Scholar 

  5. 5 J. Chovan, N. Papanicolaou and S. Komineas, Intermediate phase in the spiral antiferromagnet Ba2CuGe2O7. Physical Review B 65:64433 (2002).

    Article  ADS  Google Scholar 

  6. 6 E. P. Eisenhart, An introduction to differential geometry, with use of the tensor calculus. (Princeton University Press, Princeton, 1959).

    Google Scholar 

  7. 7 A. L. Gol'denveizer, Theory of elastic thin shells. (ASME, New York, 1961).

    Google Scholar 

  8. 8 H. Goldstein, Classical Mechanics. (Addison-Wesley, Reading, MA 1969).

    Google Scholar 

  9. 9 A. Goriely, M. Nizette and M. Tabor, On the dynamics of elastic strips. Journal of Nonlinear Science 11(1):3–45 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. 10 A. Goriely and M. Tabor, Nonlinear dynamics of filaments. 1. Dynamical instabilities. Physica D 105(1–3):20–44 (1997a).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. 11 A. Goriely and M. Tabor, Nonlinear dynamics of filaments. 2. Nonlinear analysis. Physica D 105(1–3):45–61 (1997b).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. 12 A. Goriely and M. Tabor, Nonlinear dynamics of filaments. IIIInstabilities of helical rods. Proceedings of The Royal Society of London Series A-Mathematical Physical and Engineering Sciences 453(1967):2583–2601 (1997c).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. 13 A. Goriely and M. Tabor, Nonlinear dynamics of filaments. IVSpontaneous looping of twisted elastic rods. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 454(1980):3183–3202 (1998a).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. 14 A. Goriely and M. Tabor, Spontaneous helix hand reversal and tendril perversion in climbing plants. Physical Review Letters 80(7):1564–1567 (1998b).

    Article  ADS  Google Scholar 

  15. 15 A. Goriely and M. Tabor, The nonlinear dynamics of filaments. Nonlinear Dynamics 21(1):101–133 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. 16 J. X. Hong, Darboux equations and isometric embedding of Riemannian manifolds with nonnegative curvature in R. Chinese Annals of Mathematics Series B 20:123–136 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  17. 17 J.-L. Lions and E. Sanchez-Palencia, Sensitive boundary value problems. Comptes Rendus de l'Academie des Sciences, Serie I 319:1021–6 (1994).

    MathSciNet  MATH  Google Scholar 

  18. 18 M. Marder, The shape of the edge of a leaf. cond-mat\0208232 (2002).

  19. 19 M. Marder, The shape of the edge of a leaf. Foundations of Physics 33:1743–1768 (2003).

    Article  Google Scholar 

  20. 20 M. Marder, E. Sharon, S. Smith and B. Roman, Theory of edges of leaves. Europhysics Letters 62:498–504 (2003).

    Article  ADS  Google Scholar 

  21. 21 J. Nash, The imbedding problem for Riemannian manifolds. Annals of Mathematics 63:20–63 (1956).

    Article  MathSciNet  Google Scholar 

  22. 22 A. V. Pogorelov, Differential Geometry. (P Noordhoff N. V., Groningen, 1956).

    Google Scholar 

  23. 23 E. Sanchez-Palencia, On sensitivity and related phenomena in thin shells which are not geometrically rigid. Mathematical Models and Methods in Applied Sciences pp. 139–60 (1999).

  24. 24 E. Sharon, M. Marder and H. L. Swinney, Leaves, Flowers and Garbage Bags: Making Waves. American Scientist 92:254–261 (2004).

    Article  Google Scholar 

  25. 25 E. Sharon, B. Roman, M. Marder, G.-S. Shin and H. L. Swinney, Buckling Cascades in Free Sheets. Nature 419:579 (2002).

    Article  ADS  Google Scholar 

  26. 26 M. Spivak, A comprehensive introduction to differential geometry, Vol. 5. (Publish or Perish, Berkeley, second edition, 1979).

    Google Scholar 

  27. 27 S. Venkataramani, T. Witten, E. Kramer and R. Geroch, Limitations on the smooth confinement of an unstretchable manifold. Journal of Mathematical Physics 41(7):5107–28 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marder, M., Papanicolaou, N. Geometry and Elasticity of Strips and Flowers. J Stat Phys 125, 1065–1092 (2006). https://doi.org/10.1007/s10955-006-9087-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9087-x

Keywords

Navigation