Skip to main content
Log in

Half-Space Problems for the Boltzmann Equation: A Survey

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper reviews recent mathematical results on the half-space problem for the Boltzmann equation. The case of a phase transition is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aoki, K. Nishino, Y. Sone and H. Sugimoto, Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory: Effect of gas motion along the condensed phase. Phys. Fluids, A 3:2260–2275 (1991).

    Article  MATH  ADS  Google Scholar 

  2. K. Aoki, Y. Sone and T. Yamada, Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory. Phys. Fluids A 2:1867–1878 (1990).

    Article  MATH  ADS  Google Scholar 

  3. M. D. Arthur and C. Cercignani, Nonexistence of a steady rarefied supersonic flow in a half-space. Z. Angew. Math. Phys. 31:634–645 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Revista Mat. Iberoamericana To appear.

  5. C. Bardos, R. Caflisch and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 39:323–352 (1986).

    MATH  MathSciNet  Google Scholar 

  6. P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94:511–525 (1954).

    Google Scholar 

  7. A. V. Bobylev, R. Grzhibovskis and A. Heinz, Entropy inequalities for evaporation/condensation problem in rarefied gas. J. Stat. Phys. 102:1156–1176 (2001).

    Google Scholar 

  8. R. E. Caflisch and B. Nicolaenko, Shock profiles solutions of the Boltzmann equation. Commun. Math. Phys. 86:161–194 (1982).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. C. Cercignani, Analytic solution of the temperature jump problem for the BGK model. Transport Theor. Statist. Phys. 6:29–56 (1977).

    MATH  MathSciNet  Google Scholar 

  10. C. Cercignani, Half-space problems in the kinetic theory of gases, in: Trends in applications of pure mathematics to mechanics (Bad Honnef, 1985), pp. 35–50, Lecture Notes in Phys., 249, (Springer, Berlin 1986).

  11. C. Cercignani, R. Illner, M. Pulvirenti and M. Shinbrot, On nonlinear stationary half-space problems in discrete kinetic theory. J. Statist. Phys. 52:885–896 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Coron, F. Golse and C. Sulem, A classification of well-posed kinetic layer problems. Commun. Pure Appl. Math. 41:409–435 (1988).

    MATH  MathSciNet  Google Scholar 

  13. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, (Wiley-Interscience, New York, 1948).

    MATH  Google Scholar 

  14. J.-S. Darrozes and J.-P. Guiraud, Généralisation formelle du théorème H en présence de parois. Applications. C. R. Acad. Sci. Paris Sér. A 262:1368–1371 (1969).

    Google Scholar 

  15. F. Golse, Analysis of the boundary layer equation in the kinetic theory of gases, preprint.

  16. F. Golse and F. Poupaud, Stationary solution of the linearized Boltzmann equation in a half-space. Math. Methods Appl. Sci. 11:483–502 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Grad, Singular and nonuniform limits of solutions of the Boltzmann equation. in: R. Bellman, G. Birkhoff and I. Abu-Shumays (eds.), Transport theory (American Mathematical Society, Providence, 1969), pp. 269–308.

    Google Scholar 

  18. D. Hilbert, Begründung der kinetischen Gastheorie. Math. Ann. 72:562–577 (1912).

    Article  MATH  MathSciNet  Google Scholar 

  19. T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decomposition and positivity of the shock profile. Commun. Math. Phys. 246:133–179 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Y. Sone, Kinetic theory of evaporation and condensation—Linear and nonlinear problems. J. Phys. Soc. Jpn 45:315–320 (1978).

    Article  Google Scholar 

  21. Y. Sone, Kinetic theoretical studies of the half-space problem of evaporation and condensation. Transp. Theory Stat. Phys. 29:227–260 (2000).

    MATH  Google Scholar 

  22. Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhäuser, Boston, 2002).

    MATH  Google Scholar 

  23. Y. Sone, Molecular Gas Dynamics (Birkhäuser, Boston, 2006). (to be published).

  24. Y. Sone, K. Aoki and T. Doi, Kinetic theory analysis of gas flows condensing on a plane condensed phase: Case of a mixture of a vapor and a noncondensable gas. Transp. Theory Stat. Phys 21:297–328 (1992).

    MATH  Google Scholar 

  25. Y. Sone, K. Aoki and I. Yamashita, A study of unsteady strong condensation on a plane condensed phase with special interest in formation of steady profile. in: V. Boffi and C. Cercignani (eds.), Rarefied gas dynamics (Teubner, Stuttgart, 1986), Vol. II, 323–333.

    Google Scholar 

  26. Y. Sone, F. Golse, T. Ohwada and T. Doi, Analytical study of transonic flows of a gas condensing onto its plane condensed phase on the basis of kinetic theory. Eur. J. Mech. B/Fluids 17:277–306 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  27. Y. Sone, T. Ohwada and K. Aoki, Evaporation and condensation on a plane condensed phase: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules. Phys. Fluids A 1:1398–1405 (1989).

    Article  MATH  ADS  Google Scholar 

  28. Y. Sone and Y. Onishi, Kinetic theory of evaporation and condensation. J. Phys. Soc. Jpn 35:1773–1776 (1973).

    Article  Google Scholar 

  29. Y. Sone and H. Sugimoto, Strong evaporation from a plane condensed phase. in: G. E. A. Meier and P. A. Thompson (eds.), Adiabatic Waves in Liquid-Vapor Systems, (Springer, Berlin, 1990), pp. 293–304.

    Google Scholar 

  30. Y. Sone, S. Takata and F. Golse, Notes on the boundary conditions for fluid-dynamic equations on the interface of a gas and its condensed phase. Phys. Fluids 13:324–334 (2001).

    Google Scholar 

  31. Y. Sone, S. Takata and H. Sugimoto, The behavior of a gas in the continuum limit in the light of kinetic theory: The case of cylindrical Couette flows with evaporation and condensation. Phys. Fluids 8:3403–3413 (1996); Erratum, ibid. 9:1239 (1998).

  32. S. Ukai, T. Yang and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation I. Existence. Commun. Math. Phys. 236:373–393 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. S. Ukai, T. Yang and S.-H. Yu, Nonlinear stability of boundary layers of the Boltzmann equation I. The case \(\mathcal{M}_{\infty}<-1\). Commun. Math. Phys. 244:99–109 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  34. P. Welander, On the temperature jump in a rarefied gas. Ark. Fys. 7:507–553 (1954).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Bardos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardos, C., Golse, F. & Sone, Y. Half-Space Problems for the Boltzmann Equation: A Survey. J Stat Phys 124, 275–300 (2006). https://doi.org/10.1007/s10955-006-9077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9077-z

KEY WORDS:

Navigation