Skip to main content
Log in

Diffusion Dynamics of Classical Systems Driven by an Oscillatory Force

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the asymptotic behavior of solutions to a kinetic equation describing the evolution of particles subject to the sum of a fixed, confining, Hamiltonian, and a small time-oscillating perturbation. Additionally, the equation involves an interaction operator which projects the distribution function onto functions of the fixed Hamiltonian. The paper aims at providing a classical counterpart to the derivation of rate equations from the atomic Bloch equations. Here, the homogenization procedure leads to a diffusion equation in the energy variable. The presence of the interaction operator regularizes the limit process and leads to finite diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alexandre, Some results in homogenization tackling memory effects, Asymptot. Anal. 15(3–4):229–259 (1997).

    MATH  MathSciNet  Google Scholar 

  2. R. Alexandre, Asymptotic behaviour of transport equations, Appl. Anal. 70(3–4):405–430 (1999).

    MATH  MathSciNet  Google Scholar 

  3. G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23:1482–1518 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  4. Y. Amirat, K. Hamdache, and A. Ziani, On homogenization of ordinary differential equations and linear transport equations. In Calculus of Variations, Homogenization and Continuum Mechanics (Marseille, 1993) Ser. Adv. Math. Appl. Sci., vol. 18, (World Sci. Publishing, 1994) pp. 29–50.

  5. G. Bal, G. Papanicolaou, and L. Ryzhik, Radiative transport limit for the random Schrödinger equation, Nonlinearity 15(2):513–529 (2002).

    Google Scholar 

  6. A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, Vol. 5 (North-Holland, 1978).

  7. C. Bardos, L. Dumas, and F. Golse, Diffusion approximation for billiards with totally accommodating scatterers, J. Statist. Phys. 86(1–2):351–375 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. B. Bidégaray, F. Castella, and P. Degond, From Bloch model to the rate equations, Discrete Contin. Dyn. Syst. 11(1):1–26 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Bidégaray, F. Castella, E. Dumas, and M. Gisclon, From Bloch model to the rate equations II: the case of almost degenerate energy levels, Math. Models Methods Appl. Sci. 14(12):1785–1817 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. A. Bunimovich, N. I. Chernov, and Ya. G. Sinai, Statistical properties of two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk 46(4):43–92, (1991); translation in Russian Math. Surveys 46(4):47–106 (1991).

  11. J. Casado-Díaz and I. Gayte, The two-scale convergence method applied to generalized Besicovitch spaces, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2028):2925–2946 (2002).

    Google Scholar 

  12. F. Castella, On the derivation of a Quantum Boltzmann Equation from the periodic von Neumann equation. Mod. Math. An. Num. 33(2):329–349 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Castella, From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework, J. Stat. Phys. 104(1/2):387–447 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Castella and P. Degond Convergence de l'équation de von Neumann vers l'équation de Boltzmann Quantique dans un cadre déterministe, C. R. Acad. Sci., t. 329, sér. I, 231–236 (1999).

  15. N. Dunford and J. Schwartz, Linear Operators (John Wiley & Sons, 1988).

  16. L. Erdös and H. T. Yau, Linear Boltzmann equation as scaling limit of quantum Lorentz gas, Advances in Differential Equations and Mathematical Physics, Contemporary Mathematics 217:135–155 (1998).

    Google Scholar 

  17. L. Erdös and H. T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Commun. Pure Appl. Math. 53:667–735 (2000).

    Article  MATH  Google Scholar 

  18. L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A 111:359–375 (1989).

  19. L. C. Evans, Periodic homogenization of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 120:245–265 (1992).

  20. E. Frenod and K. Hamdache, Homogenisation of transport kinetic equations with oscillating potentials, Proc. Roy. Soc. Edinburgh Sect. A 126(6):1247–1275 (1996).

  21. T. Goudon and F. Poupaud, Approximation by homogeneization and diffusion of kinetic equations, Comm. P.D.E. 26:537–570 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Goudon and F. Poupaud, Homogenization of transport equations: weak mean field approximation, SIAM J. Math Anal. 36:856–881 (2004).

    Google Scholar 

  23. T. Goudon and F. Poupaud, Homogenization of transport equations: A simple PDE approach to the Kubo formula, Preprint.

  24. J. B. Keller, G. Papanicolaou, and L. Ryzhik, Transport equations for elastic and other waves in random media, Wave Motion 24(4):327–370 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  25. O. Lanford III, The evolution of large classical systems, in: Moser, J. (ed) Dynamical Systems, Theory and Applications. Lectures Notes in Physics 35 (Springer, 1975) pp. 1–111.

  26. G. Loeper and A. Vasseur, Electric turbulence in a plasma subject to a strong magnetic field, Asymptot. Anal. 40(1):51–65 (2004).

    MATH  MathSciNet  Google Scholar 

  27. R. Loudon, The Quantum Theory of Light (Oxford Science Publications, 1983).

  28. J. W. Milnor, Topology from the Differentiable Viewpoint (The University Press of Virginia, 1963).

  29. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20:608–623 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  30. G. Nguetseng, Almost periodic homogenization: asymptotic analysis of a second order elliptic equation, Publications Mathématiques du laboratoire d'analyse numérique, Université Yaoundé I.

  31. B. Perthame and L. Ryzhik, The quantum scattering limit for a regularized Wigner equation, Preprint.

  32. M. Petrini, Homogenization of a linear transport equation with time depending coefficient, Rend. Sem. Mat. Univ. Padova 101:191–207 (1999).

    MATH  MathSciNet  Google Scholar 

  33. F. Poupaud and A. Vasseur, Classical and quantum transport in random media, Journal de Mathématiques Pures et Appliquées 82(6):711–748 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  34. E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, Vol. 127 (Springer-Verlag, 1980).

  35. J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci. 59 (Springer-Verlag, 1985).

  36. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, 1991).

  37. L. Tartar, H-convergence et compacité par compensation, Cours Peccot, Collège de France, March 1977. Partially written in: F. Murat, H-convergence, Séminaire d'Analyse Fonctionelle et Numérique 1977–78, Université d'Alger, multicopied 34 p. English translation in F. Murat, L. Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev – R. V. Kohn eds., Progress in Nonlinear Differential Equations Appl., Vol. 31 (Birkhäuser, 1997) pp. 21–43.

  38. L. Tartar, Remarks on homogenization in Homogenization and Effective Moduli of Material and Media, IMA Vol. in Math. and Appl. (Springer, 1986) pp. 228–246.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Castella.

Additional information

AMS Subject classification: 74Q10, 35Q99, 35B25, 82C70

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castella, F., Degond, P. & Goudon, T. Diffusion Dynamics of Classical Systems Driven by an Oscillatory Force. J Stat Phys 124, 913–950 (2006). https://doi.org/10.1007/s10955-006-9071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9071-5

Keywords

Navigation