Skip to main content
Log in

Current Large Deviations for Asymmetric Exclusion Processes with Open Boundaries

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

We study the large deviation functional of the current for the Weakly Asymmetric Simple Exclusion Process in contact with two reservoirs. We compare this functional in the large drift limit to the one of the Totally Asymmetric Simple Exclusion Process, in particular to the Jensen-Varadhan functional. Conjectures for generalizing the Jensen-Varadhan functional to open systems are also stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bahadoran, Hydrodynamics and hydrostatics for a class of asymmetric particle systems with open boundaries. preprint (2005).

  2. C. Bardos, A. le Roux, and J.-C. Nédélec, First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations 4(9):1017–1034 (1979).

    Google Scholar 

  3. O. Benois, R. Esposito, R. Marra, and M. Mourragui, Hydrodynamics of a driven lattice gas with open boundaries: the asymmetric simple exclusion. Markov Process Relat. Fields 10(1):89–112 (2004).

    Google Scholar 

  4. L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio, and C. Landim, Macroscopic fluctuation theory for stationary non equilibrium states. J. Stat. Phys. 107:635–675 (2002).

    Google Scholar 

  5. L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio, and C. Landim, Large deviations for the boundary driven symmetric simple exclusion process. Math. Phys. Anal. Geometry 6:231–267 (2003).

    Google Scholar 

  6. L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio, and C. Landim, Current fluctuations in stochastic lattice gases. Phys. Rev. Lett. 94:030601 (2005).

    Google Scholar 

  7. L. Bertini, A. De Sole, D. Gabrielli, G. Jona–Lasinio, and C. Landim, Non equilibrium current fluctuations in stochastic lattice gases. preprint, cond-mat/0506664 (2005).

  8. T. Bodineau and B. Derrida, Current fluctuations in non-equilibrium diffusive systems: an additivity principle. Phys. Rev. Lett. 92:180601 (2004).

    Google Scholar 

  9. T. Bodineau and B. Derrida, Distribution of current in non-equilibrium diffusive systems and phase transitions. Phys. Rev. E 72: 0661100 (2005).

    Google Scholar 

  10. B. Derrida and C. Appert, Universal large deviation function of the Kardar-Parisi-Zhang equation in one dimension. J. Stat. Phys. 94:1–30 (1999).

    Google Scholar 

  11. B. Derrida, B. Douçot, and P.-E. Roche, Current fluctuations in the one dimensional symmetric exclusion process with open boundaries. J. Stat. Phys. 115:717–748 (2004).

    Google Scholar 

  12. B. Derrida, C. Enaud, C. Landim, and S. Olla, Fluctuations in the weakly asymmetric exclusion process with open boundary conditions. J. Stat. Phys. 118(5–6):795–811 (2005).

    Google Scholar 

  13. B. Derrida, C. Enaud, and J. L. Lebowitz, The asymmetric exclusion process and Brownian excursions. J. Stat. Phys. 115:365–382 (2004).

    Google Scholar 

  14. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26:1493–1517 (1993).

    Google Scholar 

  15. B. Derrida and J. L. Lebowitz, Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett. 80:209–213 (1998).

    Google Scholar 

  16. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact free energy functional for a driven diffusive open stationary nonequilibrium system. Phys. Rev. Lett. 89:030601 (2002).

    Google Scholar 

  17. B. Derrida, J. L. Lebowitz, and E. R. Speer, Exact large deviation functional of a stationary open driven diffusive system: The asymmetric exclusion process. J. Stat. Phys. 110, 775–810 (2003).

    Google Scholar 

  18. M. Depken and R. Stinchcombe, Exact joint density-current probability function for the asymmetric exclusion process. Phys. Rev. Lett. 93:040602 (2004).

    Google Scholar 

  19. M. Depken and R. Stinchcombe, Exact probability function for bulk density and current in the asymmetric exclusion process. Phys. Rev. E 71:036120 (2005).

    Google Scholar 

  20. C. Enaud and B. Derrida, Large deviation functional of the weakly asymmetric exclusion process. J. Stat. Phys. 114:537–562 (2004).

    Google Scholar 

  21. G. Eyink, J. L. Lebowitz, and H. Spohn, Hydrodynamics of stationary nonequilibrium states for some stochastic lattice gas models. Comm. Math. Phys. 132(1):253–283 (1990).

    Google Scholar 

  22. G. Eyink, J. L. Lebowitz, and H. Spohn, Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state. Comm. Math. Phys. 140(1):119–131 (1991).

    Google Scholar 

  23. M. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, 1998.

  24. L. Jensen, The asymmetric exclusion process in one dimension, Ph.D. dissertation, New York Univ., New York, 2000; S. R. Varadhan, Large deviations for the asymmetric simple exclusion process. Stochastic Analysis on Large Scale Interacting Systems, pp. 1–27, Adv. Stud. Pure Math., Vol. 39, Math. Soc. Japan, Tokyo, 2004.

  25. A. N. Jordan, E. V. Sukhorukov, and S. Pilgram, Fluctuation statistics in networks: A stochastic path integral approach. J. Math. Phys. 45:4386–4417 (2004).

    Google Scholar 

  26. C. Kipnis, S. Olla, and C. Landim, Macroscopic properties of a stationary non-equilibrium distribution for a non-gradient interacting particle system, Ann. Inst. H. Poincaré Probab. Statist. 31(1):191–221 (1995).

    Google Scholar 

  27. C. Kipnis, S. Olla, and S. R. Varadhan, Hydrodynamics and large deviations for simple exclusion processes. Commun. Pure Appl. Math. 42:115–137 (1989).

    Google Scholar 

  28. C. Kipnis and C. Landim, Scaling limits of interacting particle systems. Grund. fur Math. Wissen. 320 (Springer 1999).

  29. J. Krug, Boundary-induced phase-transitions in driven diffusive systems. Phys. Rev. Lett. 67:1882–1885 (1991).

    Google Scholar 

  30. C. Landim, M. Mourragui, and S. Sellami, Hydrodynamic limit for a nongradient interacting particle system with stochastic reservoirs. Theory Probab. Appl. 45(4):604–623 (2002).

    Google Scholar 

  31. T. Liggett, Stochastic interacting systems: Contact, voter and exclusion processes. Grund. fur Math. Wissen. 324 (Springer 1999).

  32. S. Pilgram, A. N. Jordan, E. V. Sukhorukov, and M. Büttiker, Stochastic path integral formulation of full counting statistics Phys. Rev. Lett. 90, 206801 (2003).

    Google Scholar 

  33. F. Rezakhanlou, Hydrodynamic limit for attractive particle systems on Z d. Comm. Math. Phys. 140(3):417–448 (1991).

    Google Scholar 

  34. G. Schütz, Exactly solvable models for many-body systems far from equilibri. In: C. Domb and J. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 19, pp. 1–251, Academic Press, London, 2000.

  35. G. Schütz and E. Domany, Phase transitions in an exactly soluble one-dimensional asymmetric exclusion model. J. Stat. Phys. 72:277–296 (1993).

    Google Scholar 

  36. D. Serre, Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  37. D. Serre, Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-Boundary Value Problems, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  38. H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bodineau.

Additional information

PACS: 02.50.-r, 05.40.-a, 05.70 Ln, 82.20-w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodineau, T., Derrida, B. Current Large Deviations for Asymmetric Exclusion Processes with Open Boundaries. J Stat Phys 123, 277–300 (2006). https://doi.org/10.1007/s10955-006-9048-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9048-4

Key words

Navigation