Skip to main content
Log in

Canonical Analysis of Condensation in Factorised Steady States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the phenomenon of real space condensation in the steady state of a class of mass transport models where the steady state factorises. The grand canonical ensemble may be used to derive the criterion for the occurrence of a condensation transition but does not shed light on the nature of the condensate. Here, within the canonical ensemble, we analyse the condensation transition and the structure of the condensate, determining the precise shape and the size of the condensate in the condensed phase. We find two distinct condensate regimes: one where the condensate is gaussian distributed and the particle number fluctuations scale normally as L 1/2 where L is the system size, and a second regime where the particle number fluctuations become anomalously large and the condensate peak is non-gaussian. Our results are asymptotically exact and can also be interpreted within the framework of sums of random variables. We further analyse two additional cases: one where the condensation transition is somewhat different from the usual second order phase transition and one where there is no true condensation transition but instead a pseudocondensate appears at superextensive densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Angel, M. R. Evans, and D. Mukamel, J. Stat. Mech.: Theory Exp. P04001 (2004).

  2. P. F. Arndt, T. Heinzel, and V. Rittenberg, J. Phys. A: Math. Gen. 31:L45 (1998); J. Stat. Phys. 97:1 (1999).

    Google Scholar 

  3. P. Bialas, Z. Burda, and D. Johnston, Nucl. Phys. B 493:505 (1997).

    Google Scholar 

  4. Z. Burda, D. Johnston, J. Jurkiewicz, M. Kaminski, M. A. Novak, G. Papp, and I. Zahed, Phys. Rev. E 65:026102 (2002).

    Google Scholar 

  5. Z. Burda, J. D. Correia, and A. Krzywicki, Phys. Rev. E 64:046118 (2001).

    Google Scholar 

  6. D. Chowdhury, L. Santen, and A. Schadschneider, A Schadschneider Physics Reports 329:199 (2000).

    Google Scholar 

  7. S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan, and T. A. Witten, Phys. Rev. E. 53:4673 (1996).

    Google Scholar 

  8. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Nucl. Phys. B 666:396 (2003).

    Google Scholar 

  9. J. M. Drouffe, C. Godrèche, and F. Camia, J. Phys. A: Math. Gen. 31:L19 (1998).

    Google Scholar 

  10. M. R. Evans, Braz. J. Phys. 30:42 (2000).

    Google Scholar 

  11. M. R. Evans, Europhys. Lett. 36:13 (1996).

    Google Scholar 

  12. M. R. Evans, D. P. Foster, C. Godreche, and D. Mukamel, Phys. Rev. Lett. 74:208 (1995).

    Google Scholar 

  13. M. R. Evans and T. Hanney, J. Phys. A: Math. Gen. 38:R195 (2005).

    Google Scholar 

  14. M. R. Evans and T. Hanney, J. Phys. A: Math. Gen. 36:L441 (2003).

    Google Scholar 

  15. M. R. Evans, E. Levine, P. K. Mohanty, and D. Mukamel, Eur. Phys. J. B 41:223 (2004).

    Google Scholar 

  16. M. R. Evans, S. N. Majumdar, and R. K. P. Zia, J. Phys. A: Math. Gen. 37:L275 (2004).

    Google Scholar 

  17. M. R. Evans, S.N. Majumdar, and R. K. P. Zia (cond-mat/0602564).

  18. I. T. Georgiev, B. Schmittmann, and R. K. P. Zia, Phys. Rev. Lett. 94:115701 (2005).

    Google Scholar 

  19. C. Godrèche, J. Phys. A: Math. Gen. 36:6313 (2003).

    Google Scholar 

  20. C. Godrèche and J. M. Luck, J. Phys. Cond. Math. 14:1601(2002).

  21. C. Godrèche and J. M. Luck, J. Phys. A: Math. Gen. 38:7215–7237 (2005).

    Google Scholar 

  22. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, series and Products, 6th edition, Academic Press, San Diego, 2000.

    Google Scholar 

  23. R. L. Greenblatt and J. L. Lebowitz cond-mat/0506776.

  24. S. Großkinsky, G. M. Schütz, and H. Spohn, J. Stat. Phys. 113:389 (2003).

    Google Scholar 

  25. K. Jain, Phys. Rev. E 72:017105 (2005).

    Google Scholar 

  26. I. Jeon, P. March, and B. Pittel Ann. Probab. 28:1162 (2000).

    Google Scholar 

  27. Y. Kafri, E. Levine, D. Mukamel, G. M. Schütz, and R. D. W. Willmann, Phys. Rev. E 68:035101 (2003).

    Google Scholar 

  28. Y. Kafri, E. Levine, D. Mukamel, G. M. Schütz, and J. T örök, Phys. Rev. Lett. 89:035702 (2002).

    Google Scholar 

  29. Y. Kafri, E. Levine, D. Mukamel and J. Török, J. Phys. A: Math. Gen. 35:L459 (2002).

    Google Scholar 

  30. G. Korniss, B. Schmittmann, and R. K. P. Zia, Europhys. Lett. 45:431 (1999).

    Google Scholar 

  31. J. Krug and J. Garcia, J. Stat. Phys. 99:31 (2000); R. Rajesh and S. N. Majumdar, J. Stat. Phys. 99:943 (2000).

  32. J. Krug and P. A. Ferrari, J. Phys. A: Math. Gen. 29:L465 (1996).

    Google Scholar 

  33. E. Levine, D. Mukamel, and G. Ziv, J. Stat. Mech.: Theory Exp. P05001 (2004).

  34. S. N. Majumdar, M. R. Evans, and R. K. P. Zia, Phys. Rev. Lett. 94:180601 (2005).

    Google Scholar 

  35. S. N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. Rev. Lett. 81:3691 (1998); J. Stat. Phys. 99:1 (2000).

    Google Scholar 

  36. J. T. Mettetal, B. Schmittmann, and R. K. P. Zia, Europhys. Lett. 58:653 (2002).

    Google Scholar 

  37. O. J. O'Loan, M. R. Evans, and M. E. Cates, Phys. Rev. E 58:1404 (1998).

    Google Scholar 

  38. R. Rajesh and S. Krishnamurthy, Phys. Rev. E. 66:046132 (2002).

    Google Scholar 

  39. R. Rajesh and S. N. Majumdar, Phys. Rev. E. 63:036114 (2001).

    Google Scholar 

  40. N. Rajewsky, T. Sasamoto, and E. R. Speer, Physica A 279:123 (2000).

    Google Scholar 

  41. F. Ritort, Phys. Rev. Lett. 75:1190 (1995).

    Google Scholar 

  42. F. Spitzer, Adv. Math. 5:246 (1970).

    Google Scholar 

  43. J. Torok, Physica A 355:374–382 (2005).

    Google Scholar 

  44. D. van der Meer, K. van der Weele, and D. Lohse, J. Stat. Mech.: Theory Exp. P04004 (2004).

  45. R. K. P. Zia, M. R. Evans, and S. N. Majumdar, J. Stat. Mech.: Theory Exp. L10001 (2004).

  46. F. Zielen and A. Schadschneider, Phys. Rev. Lett. 89:090601 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Evans.

Additional information

PACS numbers: 05.40.-a, 02.50.Ey, 64.60.-i.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, M.R., Majumdar, S.N. & Zia, R.K.P. Canonical Analysis of Condensation in Factorised Steady States. J Stat Phys 123, 357–390 (2006). https://doi.org/10.1007/s10955-006-9046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9046-6

Key words

Navigation