Skip to main content
Log in

Statistical Physics of Fracture Surfaces Morphology

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, successfully reproducing the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up proposing new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Afek, E. Bouchbinder, E. Katzav, J. Mathiesen, and I. Procaccia, Phys. Rev. E 71:066127 (2005).

    Article  ADS  Google Scholar 

  2. J.-J. Ammann and E. Bouchaud, Eur. Phys. J. AP 4:133 (1998).

    Article  ADS  Google Scholar 

  3. F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. Antonia, J. Fluid. Mech. 140:63 (1984).

    Article  ADS  Google Scholar 

  4. I. Arad, V. S. L'vov and I. Procaccia. Phys. Rev. E 59:6753 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. O. H. Bakke, T. Ramstad, and A. Hansen, Fracture roughness and correlation length in the central force model. e-print: cond-mat/0508183 (2005).

  6. A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  7. F. Barra, A. Levermann, and I. Procaccia, Phys. Rev. E 66:066122 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Barra, B. Davidovitch, A. Levermann, and I. Procaccia, Phys. Rev. Lett. 87:134501 (2001).

    Article  PubMed  ADS  Google Scholar 

  9. L. Biferale and I. Procaccia, Phys. Rep. 414:43 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Bouchaud and F. Paun, Comput. Sci. Eng. 1:32 (1999).

    Article  Google Scholar 

  11. Cf. E. Bouchaud, Surf. Rev. Lett. 10:797 (2003) and references therein.

    Article  Google Scholar 

  12. E. Bouchbinder, H. G. E. Hentschel, and I. Procaccia, Phys. Rev. E 68:036601 (2003).

    Article  ADS  Google Scholar 

  13. E. Bouchbinder, I. Procaccia, and S. Sela, Phys. Rev. Lett. 95:255503 (2005).

    Article  PubMed  ADS  Google Scholar 

  14. E. Bouchbinder, I. Procaccia, S. Santucci and L. Vanel, Phys. Rev. Lett. 96:055509 (2006).

    Google Scholar 

  15. E. Bouchbinder, J. Mathiesen, and I. Procaccia, Phys. Rev. E 71:056118 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Bouchbinder, J. Mathiesen, and I. Procaccia, Phys. Rev. E 69:026127 (2004).

    Article  ADS  Google Scholar 

  17. E. Bouchbinder, J. Mathiesen, and I. Procaccia, Phys. Rev. Lett. 92:245505 (2004).

    Article  PubMed  ADS  Google Scholar 

  18. F. Célarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud, C. Guillot, and C. Marlière, Phys. Rev. Lett. 90:075504 (2003).

    Article  PubMed  ADS  Google Scholar 

  19. S. Ciliberto, Private Communication, December 2003.

  20. B. Cotterell and J. R. Rice, Int. J. Fract. 16:155 (1980).

    Article  Google Scholar 

  21. B. Davidovitch, A. Levermann, and I. Procaccia, Phys. Rev. E 62:R5919.

  22. B. Davidovitch, H. G. E. Hentschel, Z. Olami, I. Procaccia, L. M. Sander, and E. Somfai, Phys. Rev. E 59:1368 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  23. B. Davidovitch, M. H. Jensen, A. Levermann, J. Mathiesen, and I. Procaccia, Phys. Rev. Lett. 87:164101 (2001).

    Article  PubMed  ADS  Google Scholar 

  24. B. Davidovitch, M. J. Feigenbaum, H. G. E. Hentschel, and I. Procaccia, Phys. Rev. E 62:1706 (2000).

    Article  ADS  Google Scholar 

  25. T. Engøy, K. J. Måløy, A. Hansen, and S. Roux, Phys. Rev. Lett. 73:834 (1994).

    Article  PubMed  ADS  Google Scholar 

  26. M. L. Falk, Phys. Rev. B 60:7062 (1999), cf. Fig. 4.

    Article  ADS  Google Scholar 

  27. J. Feder, Fractals, New York, Plenum Press, 1988.

    MATH  Google Scholar 

  28. J. Fineberg and M. Marder, Phys. Rep. 313:1 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  29. L. B. Freund, Dynamic Fracture Mechanics, Cambridge, 1998.

  30. U. Frisch, Turbulence: the Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  31. A. A. Griffith, Phil. Trans. Roy. Soc. (London) A221:163 (1920).

    ADS  Google Scholar 

  32. T. Halpin-Healy and Y.-C Zhang, Phys. Rep. 254:215 (1995).

    Article  ADS  Google Scholar 

  33. T. Halpin-Healy, Phys. Rev. A 44:R3415 (1991).

    Article  PubMed  ADS  Google Scholar 

  34. A. Hansen and J. Schmittbuhl, Phys. Rev. Lett. 90:045504 (2003).

    Article  PubMed  ADS  Google Scholar 

  35. A. Hansen, E. L. Hinrichsen, and S. Roux, Phys. Rev. B 43:665 (1991).

    Article  ADS  Google Scholar 

  36. A. Hansen, E. L. Hinrichsen, and S. Roux, Phys. Rev. Lett. 66:2476 (1991).

    Article  PubMed  ADS  Google Scholar 

  37. M. B. Hastings and L. S. Levitov, Physica D 116:244 (1998).

    Article  ADS  Google Scholar 

  38. H. J. Herrmann and S. Roux (Eds.), Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam, 1990.

    Google Scholar 

  39. J. A. Hodgdon and J. P. Sethna, Phys. Rev. B 47:4831 (1993).

    Article  ADS  Google Scholar 

  40. J. Kertész, V. K. Horváth, and F. Weber, Fractals 1:67 (1993).

    Article  Google Scholar 

  41. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed., Pergamon, London, 1986.

    Google Scholar 

  42. J. Lubliner, Plasticity Theory, Macmillan, New York, 1990.

    MATH  Google Scholar 

  43. B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Nature (London) 308:721 (1984).

    Article  ADS  Google Scholar 

  44. J. Mathiesen, I. Procaccia, H. L. Swinney, and M. Thrasher, The universality class of diffusion limited aggregation and viscous fingering. Submitted to Phys. Rev. Lett. See also cond-mat/0512274 (2005).

  45. R. M. McMeeking, J. Mech. Phys. Solids 25:357 (1977).

    Article  Google Scholar 

  46. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, 1953.

  47. A. Nakano, J. Kalia, and P. Vashishta, Phys. Rev. Lett. 75:3138 (1995); R. J. Kalia, A. Nakano, A. Omeltchenko, K. Tsuruta, and P. Vashishta, Phys. Rev. Lett. 78:2144 (1997); A. Omeltchenko, J. Yu, R. J. Kalia, and P. Vashishta, Phys. Rev. Lett. 78:2148 (1997).

    Google Scholar 

  48. P. K. V. V. Nukala, S. Šimunovic, and S. Zapperi, J. Stat. Mech.: Theor. Exp. P08001 (2004).

  49. C. Poirier, M. Ammi, D. Bideau, and J. P. Troadec, Phys. Rev. Lett. 68:216 (1992).

    Article  PubMed  ADS  Google Scholar 

  50. F. Reurings and M. J. Alava, Eur. Phys. J. B 47:85 (2005).

    Article  ADS  Google Scholar 

  51. J. R. Rice, J. App. Mech. 35:379 (1968).

    Google Scholar 

  52. A. Sagy, Ph.D. thesis, The Hebrew University of Jerusalem (2005).

  53. L. I. Salminen, M. J. Alava, and K. J. Niskanen, Eur. Phys. J. B 32:369 (2003).

    Article  ADS  Google Scholar 

  54. S. Santucci, L. Vanel, and S. Ciliberto, Phys. Rev. Lett. 93:095505 (2004).

    Article  PubMed  ADS  Google Scholar 

  55. J. Schmittbuhl, F. Schmitt, and C. Scholtz, J. Geophys. Res. 100:5953 (1995).

    Article  ADS  Google Scholar 

  56. J. Schmittbuhl, J.-P. Vilotte, and S. Roux, Phys. Rev. E 51:131 (1995).

    Article  ADS  Google Scholar 

  57. E. T. Seppälä, V. I. Räisänen, and M. J. Alava, Phys. Rev. E 61:6312 (2000).

    Article  ADS  Google Scholar 

  58. E. Sharon, G. Cohen, and J. Fineberg, Phys. Rev. Lett. 88, 085503 (2002). For a more systematic introduction to the microbranching instability see the review in Ref. 28.

    Google Scholar 

  59. B. Skjetne, T. Helle, and A. Hansen, Phys. Rev. Lett. 87:125503 (2001).

    Article  PubMed  ADS  Google Scholar 

  60. There are theories that include also the local rotational degrees of freedom. This involves the appearance of an intrinsic material length scale that characterizes the scale of local rotations. The additional terms in the equation of motion can be shown to be negligible for large enough length scales. See, for example, W. Nowacki, Theory of Micropolar Elasticity, Springer-Verlag, Udine, 1972.

  61. G. Xu, A. F. Bower, and M. Ortiz, Int. J. Solids Struct. 31:2167 (1994); H. Gao, J. Appl. Mech. 59:335 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchbinder, E., Procaccia, I. & Sela, S. Statistical Physics of Fracture Surfaces Morphology. J Stat Phys 125, 1025–1064 (2006). https://doi.org/10.1007/s10955-006-9045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9045-7

Keywords

Navigation