Skip to main content
Log in

10.1007/s10955-006-9040-z

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive hydrodynamic equations describing the evolution of a binary fluid segregated into two regions, each rich in one species,which are separated (on the macroscopic scale) by a sharp interface. Our starting point is a Vlasov-Boltzmann (VB) equation describing the evolution of the one particle position and velocity distributions, fi (x, v, t), i = 1, 2. The solution of the VB equation is developed in a Hilbert expansion appropriate for this system. This yields incompressible Navier-Stokes equations for the velocity field u and a jump boundary condition for the pressure across the interface. The interface, in turn, moves with a velocity given by the normal component of u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rat. Mech. Anal. 128:165–205 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Binary fluids with long range segregating interaction I: derivation of kinetic and hydrodynamic equations, J. Stat. Phys. 101:1087–1136 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Bastea, R. Esposito, J. L. Lebowitz and R. Marra, Hydrodynamics of binary fluid phase segregation, Phys. Rev. Lett. 89:235701–235704 (2002).

    Article  ADS  Google Scholar 

  4. S. Bastea and J. L. Lebowitz, Spinodal decomposition in binary gases, Phys. Rev. Lett. 78:3499–3502 (1997).

    Article  ADS  Google Scholar 

  5. P. Buttà, On the validity of a Einstein relation in models of interface dynamics, J. Stat. Phys. 72:5–6 (1993).

    Article  Google Scholar 

  6. R. Caflisch. The fluid dynamical limit of the nonlinear Boltzmann equation, Commun. Pure and Appl. Math. 33, 651–666 (1980).

    MATH  MathSciNet  ADS  Google Scholar 

  7. G. Caginalp and P. C. Fife, Phase-field Methods for Interfacial Boundaries, Phys. Rev. B 33:7792–7794 (1986); Dynamics of Layered Interfaces arising from Phase Boundaries, SIAM J. Appl. Math. 48:506–518 (1988).

    Google Scholar 

  8. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I: Interfacial free energy, J. Chem. Phys. 28:258–267 (1958).

    Article  Google Scholar 

  9. E. A. Carlen, C. C. Carvahlo, R. Esposito, J. L. Lebowitz and R. Marra, Free energy minimizers for a two-species model with segregation and liquid-vapor transition, Nonlinearity 16:1075–1105 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. E. A. Carlen, M. C. Carvalho and E. Orlandi, Approximate solution of the Cahn-hilliard equation via corrections to the Mullins-Sekerka motion, Arch. Rat. Mechanics 178:1–55 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Cercignani, On the Boltzmann equation for rigid spheres, Transp. Th. Stat. Phys. 2:211 (1972); C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York (1994).

  12. S. Chandrasekar, Hydrodynamic and Hydromagnetic Stability, Chapter X, Clarendon Press, Oxford (1961).

    Google Scholar 

  13. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge Univ. Press, Cambridge, England (1970).

    Google Scholar 

  14. D. Coutand and S. Shkoller, Unique Solvability of the Free-Boundary Navier-Stokes Equations with Surface Tension, arXiv:math.AP/0212116 v2 (2003).

  15. A. De Masi, E. Orlandi, E. Presutti and L. Triolo, Stability of the interface in a model of phase separation, Proc. Royal Soc. Edinburgh 124:1013–1022 (1994).

    Google Scholar 

  16. R. Esposito, J. L. Lebowitz and R. Marra, On the derivation of Hydrodynamics from the Boltzmann equation, Phys. of Fluids 11:2354–2366 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Giacomin and J. L. Lebowitz, Exact macroscopic description of phase segregation in model alloys with long range interactions, Phys. Rev. Lett. 76:1094–1098 (1996). Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Stat. Phys. 87:37–61 (1997); Phase segregation dynamics in particle systems with long range interaction II. Interface motion, SIAM J. Appl. Math. 58:1707–1729 (1998).

    Google Scholar 

  18. W. J. Harrison, The influence of viscosity on the oscillations of superposed fluids, Proc. London Math. Soc. 6:396–405 (1908).

    MATH  Google Scholar 

  19. S. Klainerman and A. Majda, Compressible and incompressible fluids, Commun. Pure Appl. Math. 35:629 (1982).

    MATH  MathSciNet  ADS  Google Scholar 

  20. H. Lamb, Hydrodynamics, Cambridge University Press (1932).

  21. G. Manzi and R. Marra, Phase segregation and interface dynamics in kinetic systems, Nonlinearity 19, 115-147 (2006).

    Google Scholar 

  22. W. W. Mullins and R. F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys. 34:323–329 (1963).

    Article  Google Scholar 

  23. E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A 20:595–605 (1979).

    Article  ADS  Google Scholar 

  24. S. Shkoller, private communication.

  25. V. A. Solonnikov, On an initial boundary value problem for the Stokes system arising in the study of a problem with a free boundary, Proc. Steklov Inst. Math. 3:191–239 (1991); Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval, St. Petersburg Math. J. 3:189–220 (1992).

    Google Scholar 

  26. W. R. White and P. Wiltzius, Real-space measurement of structure in phase separating binary fluid mixtures, Phys. Rev. Lett. 75:3012 (1995).

    Article  ADS  Google Scholar 

  27. B. Widom and J. S. Rowlinson, Molecular Theory of Capillarity, Dover Pubns, (2003).

  28. Shih-Hsien Yu, Hydrodynamic limits with shock waves of the Boltzmann equation, Commun. Pure Appl. Math. 58:409–443 (2005).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastea1, S., Esposito, R., Lebowitz, J.L. et al. 10.1007/s10955-006-9040-z. J Stat Phys 124, 445–483 (2006). https://doi.org/10.1007/s10955-006-9040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9040-z

Keywords

Navigation