Skip to main content
Log in

Advanced Statistical Properties of Dispersing Billiards

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new approach to statistical properties of hyperbolic dynamical systems emerged recently; it was introduced by L.-S. Young and modified by D. Dolgopyat. It is based on coupling method borrowed from probability theory. We apply it here to one of the most physically interesting models—Sinai billiards. It allows us to derive a series of new results, as well as make significant improvements in the existing results. First we establish sharp bounds on correlations (including multiple correlations). Then we use our correlation bounds to obtain the central limit theorem (CLT), the almost sure invariance principle (ASIP), the law of iterated logarithms, and integral tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lect. Notes Math. 470 (Springer, Berlin, 1975).

  2. X. Bressaud and C. Liverani, Anosov diffeomorphism and coupling. Ergod. Th. Dynam. Syst. 22:129–152 (2002).

    MATH  MathSciNet  Google Scholar 

  3. L. A. Bunimovich and Ya. G. Sinai, On a fundamental theorem in the theory of dispersing billiards. Math. USSR Sbornik 19:407–423 (1973).

    Article  Google Scholar 

  4. L. A. Bunimovich and Ya. G. Sinai, Markov partitions for dispersed billiards, Commun. Math. Phys. 73:247–280 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  5. L. A. Bunimovich and Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78:479–497 (1981).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Markov partitions for two-dimensional billiards. Russ. Math. Surv. 45:105–152 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  7. L. A. Bunimovich, Ya. G. Sinai and N. I. Chernov, Statistical properties of two-dimensional hyperbolic billiards, Russ. Math. Surv. 46:47–106 (1991).

    Article  MathSciNet  Google Scholar 

  8. N. I. Chernov, Limit theorems and Markov approximations for chaotic dynamical systems. Prob. Th. Rel. Fields 101: 321–362 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Chernov, Decay of correlations and dispersing billiards, J. Statist. Phys. 94:513–556 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Chernov, Regularity of local manifolds in dispersing billiards. Math. Phys. Electr. J. 8:1 (2006).

    Google Scholar 

  11. N. Chernov and C. Dettmann, The existence of Burnett coefficients in the periodic Lorentz gas. Physica A 279:37–44 (2000).

    Article  ADS  Google Scholar 

  12. N. Chernov and D. Dolgopyat, Brownian Brownian Motion—I, manuscript; available at http://www.math.uab.edu/chernov/papers/pubs.html

  13. M. Denker, The central limit theorem for dynamical systems, Dyn. Syst. Ergod. Th. Banach Center Publ. 23 (PWN–Polish Sci. Publ., Warsaw, 1989).

  14. C. Dettmann, The Burnett expansion of the periodic Lorentz gas. Ergod. Th. Dynam. Syst. 23:481–491 (2003).

    MATH  MathSciNet  Google Scholar 

  15. G. Gallavotti and D. S. Ornstein, Billiards and Bernoulli Schemes. Commun. Math. Phys. 38:83–101 (1974).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. I. A. Ibragimov and Y. V. Linnik, Independent and stationary sequences of random variables (Wolters-Noordhoff, Groningen, 1971).

    MATH  Google Scholar 

  17. V. P. Leonov, On the dispersion of time-dependent means of a stationary stochastic process. Theory Probab. Its Appl. 6:87–93 (1961).

    Article  MathSciNet  Google Scholar 

  18. Ya. B. Pesin and Ya. G. Sinai, Gibbs measures for partially hyperbolic attractors. Erg. Th. Dyn. Sys. 2:417–438 (1982).

    MATH  MathSciNet  Google Scholar 

  19. W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables. Memoir. Amer. Math. Soc. 161: (1975).

  20. D. Ruelle, A measure associated with Axiom-A attractors. Amer. J. Math. 98:619–654 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, Mass, 1978).

    MATH  Google Scholar 

  22. Ya. G. Sinai, Markov partitions and C-diffeomorphisms. Funct. Anal. Its Appl. 2:61–82 (1968).

    Article  MATH  Google Scholar 

  23. Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surv. 25:137–189 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  24. Ya. G. Sinai, Gibbs measures in ergodic theory. Russ. Math. Surveys 27:21–69 (1972).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. L. Stojanov, An Estimate from above of the number of periodic orbits for semi-dispersed billiards. Commun. Math. Phys. 124:217–227 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity. Annals of Math. 147:585–650 (1998).

    Article  MATH  Google Scholar 

  27. L.-S. Young, Recurrence times and rates of mixing. Israel J. of Mathematics 110:153–188 (1999).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chernov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, N. Advanced Statistical Properties of Dispersing Billiards. J Stat Phys 122, 1061–1094 (2006). https://doi.org/10.1007/s10955-006-9036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9036-8

Key Words:

Navigation