Skip to main content
Log in

Drift and Diffusion in Periodically Driven Renewal Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the drift and diffusion properties of periodically driven renewal processes. These processes are defined by a periodically time dependent waiting time distribution, which governs the interval between subsequent events. We show that the growth of the cumulants of the number of events is asymptotically periodic and develop a theory which relates these periodic growth coefficients to the waiting time distribution defining the periodic renewal process. The first two coefficients, which are the mean frequency and effective diffusion coefficient of the number of events are considered in greater detail. They may be used to quantify stochastic synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Cox, Renewal Theory, Methuen, London (1962).

    Google Scholar 

  2. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam (1981).

    Google Scholar 

  3. B. Lindner, L. Schimansky-Geier, and A. Longtin, Phys. Rev. E 66, 031916 (2002).

    Google Scholar 

  4. B. Lindner and L. Schimansky-Geier, Phys. Rev. E 60, 007270 (1999).

    Google Scholar 

  5. T. Shimokawa, K. Pakdaman, T. Takahata, S. Tanabe, and S. Sato, Biol. Cybern. 83, 327 (2000).

    Google Scholar 

  6. B. Lindner, M. Kostur, and L. Schimansky-Geier, Fluct. Noise Lett. 1, R25 (2001).

    Google Scholar 

  7. D. R. Cox and V. Isham, Point Processes, Chapman and Hall (1980).

  8. R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453 (1981); C. Nicolis and G. Nicolis, Tellus 33, 225 (1981).

  9. A. Longtin, J. Stat. Phys. 70, 309 (1993).

    Google Scholar 

  10. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 233 (1998).

    Google Scholar 

  11. B. McNamara, and K. Wiesenfeld, Phys. Rev. A 39, 4854 (1989).

    Google Scholar 

  12. V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Schimansky-Geier, Phys. Usp. 42, 7 (1999).

    Google Scholar 

  13. J. Casado-Pascual, J. Gómez-Ordóñez, M. Morillo, J. Lehmann, I. Goychuk, and P. Hänggi, Phys. Rev. E 71, 011101 (2005); P. Talkner, L. Machura, M. Schindler, P. Hänggi, and J. Luczka, New J. Phys. 7, 14 (2005).

    Google Scholar 

  14. J. A. Freund, A. Neiman, and L. Schimansky-Geier, Europhys. Lett. 50, 8 (2000).

    Google Scholar 

  15. L. Callenbach, P. Hänggi, S. J. Linz, J.A. Freund, and L. Schimansky-Geier, Phys. Rev. E 65, 051110 (2002).

    Google Scholar 

  16. I. Goychuk and P. Hänggi, Phys. Rev. Lett. 91, 070601 (2003).

    Google Scholar 

  17. I. Goychuk, and P. Hänggi, Phys. Rev. E 69, 021104 (2004).

    Google Scholar 

  18. T. Prager and L. Schimansky-Geier, Phys. Rev. Lett. 91, 230601 (2003).

    Google Scholar 

  19. R. L. Stratonovich, Topics in the Theory of Random Noise, Gordon and Breach (1963).

  20. D. T. Gillespie, Phys. Letters 64A, 22 (1977).

    Google Scholar 

  21. T. Prager and L. Schimansky-Geier, Phys. Rev. E 71, 031112 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Prager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prager, T., Schimansky-Geier, L. Drift and Diffusion in Periodically Driven Renewal Processes. J Stat Phys 123, 391–413 (2006). https://doi.org/10.1007/s10955-006-9029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9029-7

Key Words

Navigation