Skip to main content
Log in

Theorem on the Distribution of Short-Time Particle Displacements with Physical Applications

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The distribution of the initial short-time displacements of particles is considered for a class of classical systems under rather general conditions on the dynamics and with Gaussian initial velocity distributions, while the positions could have an arbitrary distribution. This class of systems contains canonical equilibrium of a Hamiltonian system as a special case. We prove that for this class of systems the nth order cumulants of the initial short-time displacements behave as the 2n-th power of time for all n > 2, rather than exhibiting an nth power scaling. This has direct applications to the initial short-time behavior of the Van Hove self-correlation function, to its non-equilibrium generalizations the Green's functions for mass transport, and to the non-Gaussian parameters used in supercooled liquids and glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. van Hove, Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95: 249–262 (1954).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. P. Schofield, Some properties of the space-time correlation function, in Inelastic scattering of neutrons in solids and liquids, (International Atomic Energy Agency, 1961) pp. 39–50.

  3. A. Rahn, K. S. Singwi and A. Sjölander, Theory of slow neutron scattering by liquids. I. Phys. Rev. 126: 986–996 (1962).

    Article  ADS  Google Scholar 

  4. A. Rahm Correlations in the motion of the atoms in liquid argon, Phys. Rev. A 136: 405–411 (1964).

    ADS  Google Scholar 

  5. B. R. A. Nijboer and A. Rahman, Time expansion of correlation functions and the theory of slow neutron scattering. Physica 32: 415–432 (1966).

    Article  ADS  Google Scholar 

  6. D. Levesque and L. Verlet, Computer “experiments” on classical fluids. III. Time-dependent self-correlation functions. Phys. Rev. A 2: 2514–2528 (1970).

    Article  ADS  Google Scholar 

  7. V. F. Sears, Incoherent neutron scattering by simple liquids for large momentum transfer. Phys. Rev. A 5: 452–462 (1972).

    Article  ADS  Google Scholar 

  8. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980).

  9. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, 1986), 2nd ed.

  10. G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Dover, 1996).

  11. A. Arbe, J. Colmenero, F. Alvarez, M. Monkensbusch, D. Richter, B. Farago and B. Frick, Non-Gaussian nature of the α relaxation of glass forming polyisoprene. Phys. Rev. Lett. 89: 245701 (2002).

    Article  ADS  Google Scholar 

  12. A. Arbe, J. Colmenero, F. Alvarez, M. Monkenbusch, D. Richter, B. Farago and B. Frick, Experimental evidence by neutron scattering of a crossover from Gaussian to non-Gaussian behavior in the α relaxation of polyisoprene. Phys. Rev. E 67: 051802 (2003).

    Article  ADS  Google Scholar 

  13. J. M. Kincaid, Self-diffusion on all time scales. Phys. Rev. Lett. 74: 2985–2988 (1995).

    Article  ADS  Google Scholar 

  14. J. M. Kincaid and E. G. D. Cohen, Deviations from hydrodynamics on the nanoscale. Mol. Phys. 100: 3005–3010 (2002).

    Article  ADS  Google Scholar 

  15. J. M. Kincaid and E. G. D. Cohen, Nano- and pico-scale transport phenomena in fluids. J. Stat. Phys. 109: 361–371 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  16. E. G. D. Cohen and J. M. Kincaid, Heat transfer on the nano space and pico time scale, in Proc. of the 20th Symposium on Energy Engineering Sciences, (Argonne National Laboratory, 2002), pp. 262–269.

  17. R. van Zon and E. G. D. Cohen, Green's functions and hydrodynamics for isotopic binary diffusion (2005), preprint, arXiv:cond-mat/0508268.

  18. T. Odagaki and Y. Hiwatari, Gaussian-to-non-Gaussian transition in supercooled fluids. Phys. Rev. A 43: 1103–1106 (1991).

    Article  ADS  Google Scholar 

  19. W. Kob and H. C. Andersen, Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The Van Hove correlation function. Phys. Rev. E 51: 4626–4641 (1995).

    Article  ADS  Google Scholar 

  20. M. M. Hurley and P. Harrowell, Non-Gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid. J. Chem. Phys. 105: 10521–10526 (1996).

    Article  ADS  Google Scholar 

  21. W. Kob, C. Donati, S. J. Plimpton, P. H. Poole and S. C. Glotzer, Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79: 2827 (1997).

    Article  ADS  Google Scholar 

  22. R. Zangi and S. A. Rice, Cooperative dynamics in two dimensions. Phys. Rev. Lett. 92: 035502 (2004).

    Article  ADS  Google Scholar 

  23. H. Cramér, Mathematical Methods of Statistics (Princeton University Press, 1946).

  24. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, 1992), 2nd ed.

  25. I. M. de Schepper, M. H. Ernst and E. G. D. Cohen, The incoherent scattering function and related correlation functions in hard sphere fluids at short times. J. Stat. Phys. 25: 321–360 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Desai, Non-Gaussian corrections to Van Hove's G s (r, t) for a monatomic gas. J. Chem. Phys. 44: 77–86 (1966).

    Article  ADS  Google Scholar 

  27. I. M. de Schepper and E. G. D. Cohen, Short time behavior of the velocity autocorrelation function. Phys. Lett. A 55: 385–386 (1976).

    Article  ADS  Google Scholar 

  28. E. G. D. Cohen and I. M. de Schepper, Note on transport processes in dense colloidal suspensions. J. Stat. Phys. 63: 241–248 (1991), also 65: 419 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. van Zon.

Additional information

PACS Number: 05.20.-y, 02.30.Mv, 66.10.-x, 78.70.Nx, 05.60.Cd

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Zon, R., Cohen, E.G.D. Theorem on the Distribution of Short-Time Particle Displacements with Physical Applications. J Stat Phys 123, 1–37 (2006). https://doi.org/10.1007/s10955-006-9027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9027-9

Key words

Navigation