Skip to main content
Log in

Self-Similarity and Power-Like Tails in Nonconservative Kinetic Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the large-time behavior of solution of a simple kinetic model of Boltzmann–Maxwell type, such that the temperature is time decreasing and/or time increasing. We show that, under the combined effects of the nonlinearity and of the time-monotonicity of the temperature, the kinetic model has non trivial quasi-stationary states with power law tails. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution. The same idea is applied to investigate the large-time behavior of an elementary kinetic model of economy involving both exchanges between agents and increasing and/or decreasing of the mean wealth. In this last case, the large-time behavior of the solution shows a Pareto power law tail. Numerical results confirm the previous analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baldassarri, U. Marini Bettolo Marconi and A. Puglisi, Kinetic models of inelastic gases Mat. Mod. Meth. Appl. Sci. 12:965–983 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Ben-Avraham, E. Ben-Naim, K. Lindenberg and A. Rosas, Self-similarity in random collision processes Phys. Rev. E 68:R050103 (2003)

    Google Scholar 

  3. E. Ben-Naim and P. Krapivski, Multiscaling in inelastic collisions Phys. Rev. E 61:R5–R8 (2000).

    Article  ADS  Google Scholar 

  4. A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwellian molecules Sov. Sci. Rev. c 7:111–233 (1988).

    MATH  MathSciNet  Google Scholar 

  5. A. V. Bobylev, J. A. Carrillo and I. Gamba, On some properties of kinetic and hydrodynamics equations for inelastic interactions J. Statist. Phys. 98:743–773 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. V. Bobylev and C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions J. Statist. Phys. 110:333–375 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. V. Bobylev, C. Cercignani and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, J. Statist. Phys. 111:403–417 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. V. Bobylev, I. Gamba and V. A. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions J. Statist. Phys. 116:1651–1682 (2004).

    Article  MathSciNet  Google Scholar 

  9. J. P. Bouchaud, and M. Mézard, Wealth condensation in a simple model of economy Physica A 282:536–545 (2000).

    Article  ADS  Google Scholar 

  10. E. A. Carlen, E. Gabetta and G. Toscani, Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas Commun. Math. Phys. 305:521–546 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  11. E. A. Carlen, M. C. Carvalho and E. Gabetta, Central limit theorem for Maxwellian molecules and truncation of the Wild expansion Commun. Pure Appl. Math. 53: 370–397 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Series in Applied Mathematical Sciences, Vol. 106 (Springer-Verlag, New York 1994).

    Google Scholar 

  13. S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy J. Stat. Phys. 120:253–277 (2005).

    Article  MathSciNet  Google Scholar 

  14. M. H. Ernst and R. Brito, High energy tails for inelastic Maxwell models Europhys. Lett. 43:497–502 (2002).

    Google Scholar 

  15. M. H. Ernst and R. Brito, Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails J. Statist. Phys. 109:407–432 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Drăgulescu and V. M. Yakovenko, Statistical mechanics of money, Eur. Phys. J. B. 17:723–729 (2000).

    Article  ADS  Google Scholar 

  17. X. Gabaix, P. Gopikrishnan, V. Plerou and H. E. Stanley, A Theory of Power-Law Distributions in Financial Market Fluctuations, Nature 423:267–270 (2003).

    Article  PubMed  ADS  Google Scholar 

  18. E. Gabetta, G. Toscani and B. Wennberg, Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation J. Stat. Phys. 81:901–934 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Goudon, S. Junca and G. Toscani, Fourier-based distances and Berry-Esseen like inequalities for smooth densities Monatsh. Math. 135:115–136 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Ispolatov, P. L. Krapivsky and S. Redner, Wealth distributions in asset exchange models Eur. Phys. J. B 2:267–276 (1998).

    Article  ADS  Google Scholar 

  21. M. Kac, Probability and related topics in the physical sciences (Interscience Publishers, London-New York, 1959).

    Google Scholar 

  22. R. G. Laha and V. K. Rohatgi, Probability Theory (John Wiley and Sons, New York, 1979).

    MATH  Google Scholar 

  23. O. Malcai, O. Biham, S. Solomon and P. Richmond, Theoretical analysis and simulations of the generalized Lotka-Volterra model Phys. Rev. E 66:031102 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  24. H. P. McKean, Jr., Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas. Arch. Rat. Mech. Anal. 21:343–367 (1966).

    Article  MathSciNet  Google Scholar 

  25. S. McNamara and W. R. Young, Kinetics of a one–dimensional granular medium in the quasi–elastic limit Phys. Fluids A 5:34–45 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Pareschi, Microscopic dynamics and mesoscopic modelling of a market economy, preprint 2004.

  27. L. Pareschi and G. Russo, An introduction to Monte Carlo methods for the Boltzmann equation, ESAIM: Proceedings 10:35–75 (2001).

  28. V. Pareto, Cours d'Economie Politique (Lausanne and Paris, 1897).

  29. V. Plerou, P. Gopikrishnan and H. E. Stanley, Two-Phase Behaviour of Financial Markets Nature 421:130 (2003).

    Article  PubMed  ADS  Google Scholar 

  30. M. Potters and J. P. Bouchaud, Two–Phase behavior of financial markets arXiv: cond–mat/0304514 (2003).

  31. A. Pulvirenti and G. Toscani, Asymptotic properties of the inelastic Kac model J. Statist. Phys. 114:1453–1480 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  32. F. Slanina, Inelastically scattering particles and wealth distribution in an open economy, preprint (2003) cond-mat/0311025.

  33. S. Solomon, Stochastic Lotka-Volterra systems of competing auto-catalytic agents lead generically to truncated Pareto power wealth distribution, truncated Levy distribution of market returns, clustered volatility, booms and crashes, in Computational Finance 97, A-P. N. Refenes, A. N. Burgess and J. E. Moody (eds.), (Kluwer Academic Publishers 1998).

  34. G. Toscani, One-dimensional kinetic models of granular flows, RAIRO Modél. Math. Anal. Numér. 34:1277–1292 (2000).

    MATH  MathSciNet  Google Scholar 

  35. G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Statist. Phys. 94:619–637 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  36. C. Villani, Contribution à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas. PhD thesis, Univ. Paris-Dauphine (1998).

  37. C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations, Arch. Rational Mech. Anal. 143:273–307 (1998).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Pareschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pareschi, L., Toscani, G. Self-Similarity and Power-Like Tails in Nonconservative Kinetic Models. J Stat Phys 124, 747–779 (2006). https://doi.org/10.1007/s10955-006-9025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9025-y

KEY WORDS

Navigation