Skip to main content
Log in

Dynamics and Entropy in the Zhang Model of Self-Organized Criticality

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give a detailed study of dynamical properties of the Zhang model, including evaluation of topological entropy and estimates for the Lyapunov exponents and the dimension of the attractor. In the thermodynamic limit the entropy goes to zero and the Lyapunov spectrum collapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Abramov and V. Rokhlin, The entropy of a skew product of measure-preserving transformations, Amer. Math. Soc. Transl. Ser. 2 48:255–265 (1966).

    Google Scholar 

  2. V. Baladi, Spectrum and statistical properties of chaotic dynamics, Proc. 3rd European Congress of Mathematics, (Birkhauser, 2001), pp. 203–224.

  3. J. Buzzi, Intrinsic ergodicity of affine maps in [0,1]d, Mh. Math. 124:97–118 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Buzzi, Piecewise isometries have zero topological entropy, Ergod. Th. & Dynam. Sys. 21:1371–1377 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explenation of 1/f-noise, Phys. Rev. Lett. 59(4):381–384 (1987). P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38(1):364–374 (1988).

    Google Scholar 

  6. T. Bogenschütz and H. Crauel, The Abramov-Rokhlin Formula, Ergodic theory and related topics, III (Gustrow, 1990), 32–35, Lecture Notes in Math. 1514, (Springer, Berlin, 1992).

  7. R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. A.M.S. 153:401–414 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. R. Brown, Ergodic theory and topological dynamics, Pure and Applied Mathematics, 70, (Academic Press [Harcourt Brace Jovanovich Publ.], New York-London, 1976).

  9. Ph. Blanchard, B. Cessac, and T. Krüger, What can we learn about SOC from Dynamical System Theory, J. Statist. Phys. 98(1–2):375–404 (2000); B. Cessac, Ph. Blanchard, and T. Krüger, Lyapunov exponents and transport in the Zhang model of self-organized criticality, Phys. Rev. E 64 (2001); B. Cessac, Ph. Blanchard, T. Krüger, and J. L. Meunier, Self-organized criticality and thermodynamic formalism, J. Statist. Phys. 115:1283–1326 (2004).

  10. M. Denker, C. Grillenberger, and K. Sigmund, Ergodic theory on compact spaces, Lecture Notes in Math. 527, (Springer-Verlag, Berlin-New York, 1976).

  11. D. Dhar and R. Ramasway, Exactly solved Model of Self-Organized Critical Phenomena, Phys. Rew. Lett. 63(16):1659–1662 (1089) .

    Article  Google Scholar 

  12. A. Giacommetti and A. Dias-Guilera, Dynamical properties of the Zhang model of self-organized criticality, Phys. Rev. Lett. E 58(1):247–253 (1998).

    Google Scholar 

  13. J. E. Hutchinson, Fractals and self-similarity, Indiana University Math. Journal 30(5):713–747 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  14. H. J. Jensen, Self-organized criticality: Emergent complex behavior in physical and biological systems, Cambridge Lecture Notes in Physics 10, (Cambridge University Press, 1998).

  15. A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Etudes Sci. Publ. Math. 51:137–173 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, (Cambridge University Press, 1995).

  17. A. Katok and J.-M. Strelcyn, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Math. 1222, (Springer, Berlin, 1986).

  18. B. V. Kozelov and T. V. Kozelova, Cellular automata model of magnetospheric-ionospheric coupling, Annales Geophysicae 21:1931–1938 (2003).

    Article  ADS  Google Scholar 

  19. B. Kruglikov and M. Rypdal, A piece-wise affine contracting map with positive entropy, ArXiv: math.DS/0504187.

  20. B. Kruglikov and M. Rypdal, Entropy via multiplicity, ArXiv: math.DS/0505019.

  21. F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, I–II, Ann. of Math. (2) 122(3):540–574 (1985).

    Article  MathSciNet  Google Scholar 

  22. P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc. 42:15–23 (1946).

    MATH  Google Scholar 

  23. Y. Pesin, Dynamical systems with generalized Hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergod. Th. & Dynam. Sys. 12:123–151 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. Pesin, Dimension theory in dynamical systems, Chicago Lect. in Math. Ser., (The University of Chicago Press, 1997).

  25. K. Petersen, Chains, entropy, coding, Ergod. Th. & Dynam. Sys. 6(3):415–448 (1986).

    MATH  Google Scholar 

  26. M. Pollicott and M. Yuri, Dynamical systems and ergodic theory, London Mathematical Society Student Texts 40, (Cambridge University Press, 1998).

  27. D. Ruelle, Chaotic evolution and strange attractors, Lezioni Lincee, (Cambridge University Press, 1989).

  28. M. Rypdal, Dynamics of the Zhang model of Self-Organized Criticality, Master Thesis in mathematics, University of Troms—2004, e-printed: http://www.math.uit.no/seminar/preprints.html.

  29. J. Schmeling and S. Troubetzkoy, Dimension and invertibility of hyperbolic endomorphisms with singularities, Ergod. Th. & Dynam. Sys. 18:1257–1282 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Y. Zhang, Scaling theory of self-organized criticality, Phys. Rev. Lett. 63(5):470–473 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kruglikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglikov, B., Rypdal, M. Dynamics and Entropy in the Zhang Model of Self-Organized Criticality. J Stat Phys 122, 975–1039 (2006). https://doi.org/10.1007/s10955-005-9011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-9011-9

Keywords

Navigation