Skip to main content
Log in

Some Considerations on the Derivation of the Nonlinear Quantum Boltzmann Equation II: The Low Density Regime

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we analyse the asymptotic dynamics of a system of N identical quantum particles in a low-density regime. Our approach follows the strategy introduced by the authors in a previous work,(2) to treat the simpler weak coupling regime. The time evolution of the Wigner transform of the one-particle reduced density matrix is represented by means of a perturbative series. The expansion is obtained upon iterating the Duhamel formula, in the spirit of the paper by Lanford.(32) For short times and small interaction potential, we rigorously prove that a subseries of the complete perturbative series, converges to the solution of the nonlinear Boltzmann equation that is physically relevant in the context. An important point is that we completely identify the cross-section entering the limiting Boltzmann equation, as being the Born series expansion of quantum scattering.

As in ref. 2, our convergence result is only partial, in that we merely characterize the asymptotic behaviour of a subseries of the complete original perturbative expansion. We only have plausibility arguments in the direction of proving that the terms we neglect, when going from the original series to its associated subseries, are indeed vanishing in the limit.

The present study holds in any dimension d ≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Saunders, Philadelphia, 1976).

    Google Scholar 

  2. D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation. J. Stat. Phys. 116(1/4):381–410 (2004).

    Article  MathSciNet  Google Scholar 

  3. D. Benedetto, F. Castella, R. Esposito, and M. Pulvirenti, On the Weak Coupling Limit for Bosons and Fermions, to appear in Math. Mod. Meth. Appl. Sci. (2005).

  4. A. Bohm, Quantum Mechanics, Texts and Monographs in Physics, Springer-Verlag, 1979).

  5. C. Boldrighini, L. A. Bunimovich, and Ya. Sinai, On the Boltzmann equation for the Lorentz gas. J. Stat. Phys. 32(3):477–501 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Castella, From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework. J. Stat. Phys. 104(1/2):387–447 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Castella, From the von Neumann equation to the Quantum Boltzmann equation II: identifying the Born series. J. Stat. Phys. 106(5/6):1197–1220 (2002).

    Google Scholar 

  8. F. Castella and A. Plagne, Non-derivation of the quantum Boltzmann equation from the periodic Schrödinger equation. Indiana Univ. Math. J. 51(4):963–1016 (2002).

    Article  MathSciNet  Google Scholar 

  9. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, (Cambridge Univ. Press, Cambridge, England, 1970).

    Google Scholar 

  10. C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of dilute gases, Applied Mathematical Sciences 106, (Springer-Verlag, New York, 1994).

  11. T. Chen, L r Convergence of a Random Schrödinger to a Linear Boltzmann Evolution, preprint arxiv math-ph/0407037.

  12. S. L. Chuang, Physics of Optoelectronic Devices, Wiley series in pure and applied optics, New-York (1995).

  13. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique Quantique, I et II, Enseignement des Sciences 16, Hermann (1973).

  14. M. Combescot, On the generalized golden rule for transition probabilities. Phys. A: Math. Gene. 34(31):6087–6104 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. R. Dümcke, The low density limit for an N-level system interacting with a free Bose or Fermi gas. Comm. Math. Phys. 97(3):331–359 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. D. Dürr, S. Goldstein, and J. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: the Landau model. Comm. Math. Phys. 113:209–230 (1987).

    Google Scholar 

  17. D. Eng and L. Erdös, The linear Boltzmann equation as the low density limit of a random Schrödinger equation, preprint arxiv math-ph/0412044.

  18. L. Erdös, M. Salmhofer, and H.-T. Yau, On the quantum Boltzmann equation, Mathematical Physics Archive University of Texas, 03–56, (2003).

  19. L. Erdös and H. T. Yau, Linear Boltzmann Equation as Scaling Limit of Quantum Lorentz Gas, Advances in differential equations and mathematical physics (Atlanta, GA, 1997):137–155, Contemp. Math., 217, Amer. Math. Soc., Providence, RI (1998).

  20. L. Erdös and H. T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Comm. Pure Appl. Math. 53(6):667–735 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Esposito, M. Pulvirenti, and A. Teta, The Boltzmann Equation for a One-Dimensional Quantum Lorentz gas, Comm. Math. Phys. 204(3):619–649 (1999), and Erratum: “The Boltzmann equation for a one-dimensional quantum Lorentz gas,” Comm. Math. Phys. 214(2):493–494 (2000).

    Google Scholar 

  22. M. V. Fischetti, Theory of electron transport in small semiconductor devices using the Pauli master equations. J. Appl. Phys. 83(1):270–291 (1998).

    Article  ADS  Google Scholar 

  23. G. Gallavotti, Time evolution problems in classical statistical mechanics and the wind-tree-model Cargese Lectures in Physics, Vol. IV, ed. D. Kastler, Gordon Breach, Paris, (1970); Divergences and approach to equilibrium in the Lorenz and the wind-tree models. Phys. Rev. 185:308–322 (1969). See also the book Statistical Mechanics, Appendix A2 to Ch. 1, Springer–Verlag (1999).

  24. T. G. Ho and L. J. Landau, Fermi gas on a lattice in the van Hove limit. J. Stat. Phys. 87(3–4):821–845 (1997).

    Article  Google Scholar 

  25. T. G. Ho, L. J. Landau, and A. J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential. Rev. Math. Phys. 5(2):209–298 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  26. N. M. Hugenholtz, Derivation of the Boltzmann equation for a Fermi gas. J. Stat. Phys. 32(2):231–254 (1983).

    Article  MathSciNet  Google Scholar 

  27. R. Illner and M. Pulvirenti, Global Validity of the Boltzmann equation for a two dimensional rare gas in vacuum. Comm. Math. Phys. 105:189–203 (1986). Erratum and improved result. Comm. Math. Phys. 121:143–146 (1989).

    Google Scholar 

  28. J. B. Keller, G. Papanicolaou, and L. Ryzhik, Transport equations for elastic and other waves in random media. Wave Motion 24(4):327–370 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Kohn and J. M. Luttinger. Phys. Rev. 108:590 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. W. Kohn and J. M. Luttinger. Phys. Rev. 109:1892 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. R. Kubo. J. Phys. Soc. Jap. 12 (1958).

  32. O. Lanford III, Time evolution of large classical systems. Lecture Notes in Physics 38:1–111, E. J. Moser ed., Springer-Verlag (1975).

  33. L. J. Landau, Observation of Quantum Particles on a Large Space-Time Scale. J. Stat. Phys. 77(1–2):259–309 (1994).

    Article  MATH  Google Scholar 

  34. P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor equations, (Springer-Verlag, Vienna, 1990).

    MATH  Google Scholar 

  35. F. Nier, Asymptotic Analysis of a scaled Wigner equation and Quantum Scattering. Transp. Theor. Stat. Phys. 24(4 et 5):591–629 (1995).

    MATH  MathSciNet  Google Scholar 

  36. F. Nier, A semi-classical picture of quantum scattering. Ann. Sci. Ec. Norm. Sup. 4(Sér., t. 29):149–183 (1996).

    MATH  MathSciNet  Google Scholar 

  37. F. Poupaud and A. Vasseur, Classical and quantum transport in random media. J. Mathématiques Pures et Appliquées 82(6):711–748 (2003).

    Article  Google Scholar 

  38. W. Pauli, Festschrift zum 60. Geburtstage A. Sommerfelds, p. 30, (Hirzel, Leipzig, 1928).

  39. M. Reed and B. Simon, Methods of modern mathematical physics III. Scattering theory (Academic Press, New York-London, 1979).

    Google Scholar 

  40. E. Rosencher and B. Vinter, Optoelectronique, Dunod (2002).

  41. H. Spohn, Derivation of the transport equation for electrons moving through random impurities. J. Stat. Phys. 17(6):385–412 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Spohn, Large Scale Dynamics of Interacting Particles, Springer (1991).

  43. H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Modern Phys. 52(3):569–615 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Spohn, Quantum Kinetic Equations, in On Three Levels: Micro-Meso and Macro Approaches in Physics, M. Fannes, C. Maes, A. Verbeure eds, Nato ASI Series B: Physics, V. 324: 1–10 (1994).

  45. L. Van Hove. Physica 21:517 (1955).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. L. Van Hove. Physica 23:441 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. L. Van Hove, in Fundamental Problems in Statistical Mechanics, E.G.D. Cohen ed., 157 (1962).

  48. R. Zwanzig, Quantum Statistical Mechanics, P.H.E. Meijer ed., (Gordon and Breach, New-York, 1966).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, D., Castella, F., Esposito, R. et al. Some Considerations on the Derivation of the Nonlinear Quantum Boltzmann Equation II: The Low Density Regime. J Stat Phys 124, 951–996 (2006). https://doi.org/10.1007/s10955-005-9010-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-9010-x

Keywords

Navigation