Skip to main content
Log in

Unified Solution of the Expected Maximum of a Discrete Time Random Walk and the Discrete Flux to a Spherical Trap

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Two random-walk related problems which have been studied independently in the past, the expected maximum of a random walker in one dimension and the flux to a spherical trap of particles undergoing discrete jumps in three dimensions, are shown to be closely related to each other and are studied using a unified approach as a solution to a Wiener-Hopf problem. For the flux problem, this work shows that a constant c = 0.29795219 which appeared in the context of the boundary extrapolation length, and was previously found only numerically, can be derived analytically. The same constant enters in higher-order corrections to the expected-maximum asymptotics. As a byproduct, we also prove a new universal result in the context of the flux problem which is an analogue of the Sparre Andersen theorem proved in the context of the random walker's maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. G. Coffman and P. W. Shor, Packing in two dimensions: asymptotic average-case analysis of algorithms. Algorithmica 9:253–277 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  2. E. G. Coffman, P. Flajolet, L. Flato and M. Hofri, The maximum of random walk and its application to rectangle packing. Probability in Engineering and Informational Sciences 12:373–386 (1998).

    Article  MATH  Google Scholar 

  3. A. Comtet and S. N. Majumdar, Precise asymptotics for a random walker's maximum. J. Stat. Mech.: Th. and Exp. P06013:1–17 (2005).

    Google Scholar 

  4. R. M. Ziff, Flux to a trap. J. Stat. Phys. 65:1217–1233 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. M. von Smoluchowski, Drei Vortrge ber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Phys. Z. 17:557–571, 585–599 (1916).

    Google Scholar 

  6. S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15:1–89 (1943).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. G. H. Weiss, Overview of theoretical-models for reaction rates. J. Stat. Phys. 42:3–36 (1986).

    Article  ADS  Google Scholar 

  8. M. A. Burschka and U. M. Titulaer, The kinetic boundary layer theory for the Fokker-Planck equation with absorbing boundary. J. Stat. Phys. 25:569–582 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  9. K. M. Case and P. W. Zwiefel, Linear Transport Theory (Addison-Wesley, Reading, Massachusetts, 1967).

  10. M. M. R. Williams, The Slowing Down and Thermalization of Neutrons (North-Holland, Amsterdam, 1966).

  11. F. C. Collins and G. E. Kimball, Diffusion-controlled reaction rates. J. Colloid Sci. 4:425–437 (1949).

    Article  Google Scholar 

  12. S. Redner, A Guide to First-passage Processes, (Cambridge University Press, Cambridge 2001), p. 170.

    MATH  Google Scholar 

  13. V. V. Ivanov, Resolvent method: exact solutions of half-space transport problems by elementary means, Astron. Astrophys. 286:328–337 (1994).

    ADS  Google Scholar 

  14. F. Pollaczek, Fonctions caractéristiques de certaines répartitions définies au moyen de la notion d'ordre. Comptes rendus 234:2334–2336 (1952).

    MATH  MathSciNet  Google Scholar 

  15. F. Spitzer, The Wiener-Hopf equation whose kernel is a probability density. Duke Math. J. 24:327–343 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  16. E. S. Andersen, On the fluctuations of sums of random variables II. Matematica Scandinavica 2:195–223 (1954).

    MATH  Google Scholar 

  17. U. Frisch and H. Frisch, Universality of escape from a half-space for symmetrical random walks, in Lévy Flights and Related Topics in Physics: Proceedings of the International Workshop held at Nice, France, Lecture Notes in Physics, ed. M.F. Shlesinger et al 262–268 (Springer-Verlag, 1994).

  18. R. M. Ziff, S. N. Majumdar and A. Comtet, to be published.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Ziff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, S.N., Comtet, A. & Ziff, R.M. Unified Solution of the Expected Maximum of a Discrete Time Random Walk and the Discrete Flux to a Spherical Trap. J Stat Phys 122, 833–856 (2006). https://doi.org/10.1007/s10955-005-9002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-9002-x

Keywords

Navigation