Skip to main content
Log in

Systematic Density Expansion of the Lyapunov Exponents for a Two-Dimensional Random Lorentz Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the Lyapunov exponents of a two-dimensional, random Lorentz gas at low density. The positive Lyapunov exponent may be obtained either by a direct analysis of the dynamics, or by the use of kinetic theory methods. To leading orders in the density of scatterers it is of the form A 0ñln ñ+B 0ñ, where A 0 and B 0 are known constants and ñ is the number density of scatterers expressed in dimensionless units. In this paper, we find that through order (ñ2), the positive Lyapunov exponent is of the form A 0ñln ñ+B 0ñ+A 1ñ2ln ñ +B 1ñ2. Explicit numerical values of the new constants A 1 and B 1 are obtained by means of a systematic analysis. This takes into account, up to O2), the effects of all possible trajectories in two versions of the model; in one version overlapping scatterer configurations are allowed and in the other they are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gaspard and G. Nicolis, Phys. Rev. Lett. 65:1693 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London (1990).

    Google Scholar 

  3. J. R. Dorfman, An Introduction to Chaos in Non-Equilibrium Statistical Mechanics, Cambridge Univ. Press (1999).

  4. W. G. Hoover, Computational Statistical Mechanics Elsevier Publ. Co., Amsterdam (1991).

  5. Ya. G. Sinai, Russ. Math. Surv. 25:137 (1970).

    Article  MathSciNet  Google Scholar 

  6. N. S. Krylov, Works on the Foundations of Statistical Mechanics, Princeton University Press, Princeton (1979).

    Google Scholar 

  7. H. van Beijeren and J. R. Dorfman, Phys. Rev. Lett. 74:4412 (1995).

    Article  ADS  Google Scholar 

  8. H. van Beijeren and J. R. Dorfman, Phys. Rev. Lett. 76:3238 (1996).

    Article  ADS  Google Scholar 

  9. H. van Beijeren, A. Latz and J. R. Dorfman, Phys. Rev. E 57:4077 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  10. Since we use the full collision frequency in our equations this should perhaps rather be called a Lorentz-Enskog equation. Substituting νc = 2nav one indeed recovers the Lorentz Boltzmann equation of [7].

  11. H. van Beijeren, A. Latz, and J. R. Dorfman, Phys. Rev. E 63: 016312 (2001).

    Google Scholar 

  12. H. V. Kruis, Masters thesis, University of Utrecht, The Netherlands (1997).

  13. D. Panja, Ph.D. thesis, University of Maryland, College Park, USA (2000).

  14. D. Panja (unpublished).

  15. J. M. J. van Leeuwen and A. Weyland, Physica 36:457 (1967); J. M. J. van Leeuwen and A. Weyland, Physica 39:35 (1968).

  16. M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen, Physica 45:127 (1969).

    Article  ADS  Google Scholar 

  17. H. van Beijeren and M. H. Ernst, J. Stat. Phys. 21:125 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruis, H.V., Panja, D. & van Beijeren, H. Systematic Density Expansion of the Lyapunov Exponents for a Two-Dimensional Random Lorentz Gas. J Stat Phys 124, 823–842 (2006). https://doi.org/10.1007/s10955-005-9001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-9001-y

Keywords

Navigation