Skip to main content
Log in

Tricritical Directed Percolation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a modification of the contact process incorporating higher-order reaction terms. The original contact process exhibits a non-equilibrium phase transition belonging to the universality class of directed percolation. The incorporated higher-order reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous phase transitions is separated by a tricritical point from a line of discontinuous phase transitions. The corresponding tricritical scaling behavior is analyzed in detail, i.e., we determine the critical exponents, various universal scaling functions as well as universal amplitude combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hinrichsen. Adv. Phys. 49:815 (2000).

    Article  ADS  Google Scholar 

  2. G. Ódor. Rev. Mod. Phys. 76:663 (2004).

    Article  ADS  Google Scholar 

  3. S. Lübeck. Int. J. Mod. Phys. B 18:3977 (2004).

    Article  ADS  Google Scholar 

  4. J. Marro and R. Dickman, Nonequilibrium phase transitions in lattice models (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  5. H.-K. Janssen. J. Phys.: Cond. Mat. 17:S1973 (2005).

    Article  ADS  Google Scholar 

  6. H.-K. Janssen. Z. Phys. B 42:151 (1981).

    Article  ADS  Google Scholar 

  7. P. Grassberger. Z. Phys. B 47:365 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Lübeck and R. D. Willmann. Nucl. Phys. B 718:341 (2005).

    Article  ADS  MATH  Google Scholar 

  9. H.-K. Janssen. Phys. Rev. E 55:6253 (1997).

    Article  ADS  Google Scholar 

  10. I. Jensen. Phys. Rev. Lett. 77:4988 (1996).

    Article  ADS  Google Scholar 

  11. A. G. Moreira. Phys. Rev. E 54:3090 (1996).

    Article  ADS  Google Scholar 

  12. R. Cafiero, A. Gabrielli, and M. A. Muoz. Phys. Rev. E 57:5060 (1998).

    Article  ADS  Google Scholar 

  13. J. Hooyberghs, F. Iglói, and C. Vanderzande. Phys. Rev. E 69:066140 (2004).

    Article  ADS  Google Scholar 

  14. T. Vojta and M. Dickison. Phys. Rev. E 72:036126 (2005).

    Article  ADS  Google Scholar 

  15. E. Domany and W. Kinzel. Phys. Rev. Lett. 53:311 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. W. Essam. J. Phys. A 22:4927 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. S. Manna, J. Phys. A 24:L363 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Rossi. R. Pastor-Satorras, and A. Vespignani, Phys. Rev. Lett. 85:1803 (2000).

    Article  ADS  Google Scholar 

  19. S. Lübeck and P. C. Heger. Phys. Rev. Lett. 90:230601 (2003).

    Article  Google Scholar 

  20. D. Zhong and D. ben Avraham. Phys. Lett. A 209:333 (1995).

    Article  ADS  Google Scholar 

  21. J. L. Cardy and U. C. Täuber. Phys. Rev. Lett. 13:4780 (1996).

    Article  ADS  Google Scholar 

  22. T. Ohtsuki and T. Keyes. Phys. Rev. A 35:2697 (1987).

    Article  ADS  Google Scholar 

  23. T. Ohtsuki and T. Keyes. Phys. Rev. A 36:4434 (1987).

    Article  ADS  Google Scholar 

  24. H.-K. Janssen, M. Müller, and O. Stenull. Phys. Rev. E 70:026114 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. P. Atman, R. Dickman, and J. G. Moreira. Phys. Rev. E 67:016107 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  26. K. E. Bassler and D. A. Browne. Phys. Rev. Lett. 77:4094 (1996).

    Article  ADS  Google Scholar 

  27. F. Bagnoli, N. Boccara, and R. Rechtman. Phys. Rev. E 63:046116 (2001).

    Article  ADS  Google Scholar 

  28. T. E. Harris. Ann. Prob. 2:969 (1974).

    Article  MATH  Google Scholar 

  29. G. Ódor, private communication (2005).

  30. R. Dickman and T. Tomé. Phys. Rev. A 44:4833 (1991).

    Article  ADS  Google Scholar 

  31. R. M. Ziff and B. J. Brosilow. Phys. Rev. A 46:4630 (1992).

    Article  ADS  Google Scholar 

  32. B. J. Brosilow and R. M. Ziff. Phys. Rev. A 46:4534 (1992).

    Article  ADS  Google Scholar 

  33. S. Lübeck and R. D. Willmann. J. Phys. A 35:10205 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Mori and K. J. McNeil. Prog. Theor. Phys. 57:770 (1977).

    Article  ADS  Google Scholar 

  35. S. Lübeck and R. D. Willmann. J. Stat. Phys 115:1231 (2004).

    Article  ADS  Google Scholar 

  36. J. L. Cardy and R. L. Sugar. J. Phys. A 13:L423 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  37. S. P. Obukhov. Physica A 101:145 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  38. T. M. Liggett. Interacting particle systems (Springer, New York, 1985).

    MATH  Google Scholar 

  39. R. Dickman. Phys. Rev. E 60:2441 (1999).

    Article  ADS  Google Scholar 

  40. E. Luijten, H. W. J. Blöte, and K. Binder. Phys. Rev. Lett. 79:561 (1997).

    Article  ADS  Google Scholar 

  41. S. Lübeck and P. C. Heger. Phys. Rev. E 68:056102 (2003).

    Article  ADS  Google Scholar 

  42. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, 1997).

    MATH  Google Scholar 

  43. S. Lübeck and H.-K. Janssen. Phys. Rev. E 72:016119 (2005).

    Article  ADS  Google Scholar 

  44. P. Grassberger. J. Phys. A 22:3673 (1989).

    Article  ADS  Google Scholar 

  45. J. C. Lee. J. Phys. A 24:L377 (1991).

    Article  ADS  Google Scholar 

  46. C. A. Voigt and R. M. Ziff. Phys. Rev. E 56:R6241 (1997).

    Article  ADS  Google Scholar 

  47. P. Grassberger and Y.-C. Zhang. Physica A 224:169 (1996).

    Article  ADS  Google Scholar 

  48. I. Jensen. Phys. Rev. A 45:R563 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lübeck.

Additional information

PACS numbers: 05.70.Ln, 05.50.+q, 05.65.+b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lübeck, S. Tricritical Directed Percolation. J Stat Phys 123, 193–221 (2006). https://doi.org/10.1007/s10955-005-9000-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-9000-z

Key Words

Navigation