Skip to main content
Log in

Gas Flow in Microchannels – A Lattice Boltzmann Method Approach

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Gas flow in microchannels can often encounter tangential slip motion at the solid surface even under creeping flow conditions. To simulate low speed gas flows with Knudsen numbers extending into the transition regime, alternative methods to both the Navier–Stokes and direct simulation Monte Carlo approaches are needed that balance computational efficiency and simulation accuracy. The lattice Boltzmann method offers an approach that is particularly suitable for mesoscopic simulation where details of the molecular motion are not required. In this paper, the lattice Boltzmann method has been applied to gas flows with finite Knudsen number and the tangential momentum accommodation coefficient has been implemented to describe the gas-surface interactions. For fully-developed channel flows, the results of the present method are in excellent agreement with the analytical slip-flow solution of the Navier–Stokes equations, which are valid for Knudsen numbers less than 0.1. The present paper demonstrates that the lattice Boltzmann approach is a promising alternative simulation tool for the design of microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Gad-el-Hak (1999) ArticleTitleThe fluid mechanics of microdevices – the Freeman scholar lecture J. Fluids Eng. 121 5–33

    Google Scholar 

  • R. Roveda D.B. Goldstein P.L. Varghese (2000) ArticleTitleHybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow J. Spacecraft Rockets 37 753–760 Occurrence Handle10.2514/2.3647 Occurrence Handle2000JSpRo..37..753R

    Article  ADS  Google Scholar 

  • D.B. Hash H.A. Hassan (1996) ArticleTitleAssessment of schemes for coupling Monte Carlo and Navier–Stokes solution methods J Thermophys. Heat Transf. 10 242–249 Occurrence Handle10.2514/3.781

    Article  Google Scholar 

  • C. L. Bailey, R. W. Barber, and D. R. Emerson, Is it safe to use Navier–Stokes for gas microflows? in European Congress on Computational Methods in Applied Sciences and Engineering, P Neittaanmäki, T. Rossi, S. Korotov, E. Ońate, J. Périaux, and D Knörzer, eds. ECCOMAS 2004 (Jyväskylä, Finland, 2004)

  • X.B. Nie G.D. Doolen S. Chen (2002) ArticleTitleLattice-Boltzmann simulation of fluid flows in MEMS J. Stat. Phys. 107 279–289 Occurrence Handle10.1023/A:1014523007427 Occurrence Handle1007.82007

    Article  MATH  Google Scholar 

  • C.Y. Lim C. Shu X.D. Niu Y.T. Chew (2002) ArticleTitleApplication of lattice Boltzmann method to simulate microchannel flows Phys. Fluids 14 2299–2308 Occurrence Handle10.1063/1.1483841 Occurrence Handle2002PhFl...14.2299L

    Article  ADS  Google Scholar 

  • X.D. Niu C. Shu Y.T. Chew (2004) ArticleTitleA lattice Boltzmann BGK model for simulation of micro flows Europhys. Lett. 67 600–606 Occurrence Handle10.1209/epl/i2003-10307-8 Occurrence Handle2004EL.....67..600N

    Article  ADS  Google Scholar 

  • X. He L.-S. Luo (1997) ArticleTitleA priori derivation of the lattice Boltzmann equation Phys. Rev. E 55 R6333–R6336 Occurrence Handle10.1103/PhysRevE.55.R6333 Occurrence Handle1997PhRvE..55.6333H

    Article  ADS  Google Scholar 

  • T. Abe (1997) ArticleTitleDerivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation J. Comp Phys. 131 241–246 Occurrence Handle0877.76062 Occurrence Handle1997JCoPh.131..241A

    MATH  ADS  Google Scholar 

  • X. Shan X. He (1998) ArticleTitleDiscretization of the velocity space in the solution of the Boltzmann equation Phys. Rev. Lett. 80 65–68 Occurrence Handle10.1103/PhysRevLett.80.65 Occurrence Handle1998PhRvL..80...65S

    Article  ADS  Google Scholar 

  • Y.H. Qian Y. Zhou (2000) ArticleTitleHigher-order dynamics in lattice-based models using the Chapman-Enskog method Phys. Rev. E 61 2103–2106 Occurrence Handle2000PhRvE..61.2103Q

    ADS  Google Scholar 

  • Y.H. Zhang R.S. Qin D.R. Emerson (2005) ArticleTitleGas surface interaction model in simulation of rarefied gas flows through microchannels using Lattice Boltzmann method Phys. Rev. E 71 047702 Occurrence Handle2005PhRvE..71d7702Z

    ADS  Google Scholar 

  • Y. Qian D. d’Humières P. Lallemand (1992) ArticleTitleLattice BGK models for Navier–Stokes equation Europhys. Lett. 17 479–484 Occurrence Handle1992EL.....17..479Q Occurrence Handle1116.76419

    ADS  MATH  Google Scholar 

  • X. He L.-S. Luo (1997) ArticleTitleTheory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation Phys. Rev. E 56 6811–6817 Occurrence Handle1997PhRvE..56.6811H

    ADS  Google Scholar 

  • F. Sharipov V. Seleznev (1998) ArticleTitleData on internal rarefied gas flows J. Phys. Chem. Ref. Data 27 657–706 Occurrence Handle1998JPCRD..27..657S Occurrence Handle10.1063/1.556019

    Article  ADS  Google Scholar 

  • S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, 1970)

  • C. Cercignani (1975) Theory and Application of the Boltzmann Equation Scottish Academic Edinburgh Occurrence Handle0403.76065

    MATH  Google Scholar 

  • C. Cercignani R. Illner M. Pulvirenti (1994) The Mathematical Theory of Dilute Gases Springer New York Occurrence Handle0813.76001

    MATH  Google Scholar 

  • J.C. Maxwell (1879) ArticleTitleOn stresses in rarefied gases arising from inequalities of temperature Phil. Trans. R. Soc. 170 231–256 Occurrence Handle11.0777

    MATH  Google Scholar 

  • G.E. Karniadakis A. Beskok (2002) Micro flows: Fundamentals and Simulation Springer New York Occurrence Handle0998.76002

    MATH  Google Scholar 

  • S. Ansumali I.V. Karlin (2002) ArticleTitleKinetic boundary conditions in the lattice Boltzmann method Phys. Rev. E 66 026311 Occurrence Handle10.1103/PhysRevE.66.026311 Occurrence Handle2002PhRvE..66b6311A Occurrence Handle1922231

    Article  ADS  MathSciNet  Google Scholar 

  • S. Succi (2002) ArticleTitleMesoscopic modelling of slip motion at fluid-solid interfaces with heterogeneous catalysis Phys. Rev. Lett 89 064502 Occurrence Handle10.1103/PhysRevLett.89.064502 Occurrence Handle2002PhRvL..89f4502S

    Article  ADS  Google Scholar 

  • C. Cercignani, Higher Order Slip According to the Linearized Boltzmann Equation, Institute of Engineering Research Report AS-64-19, University of California, Berkeley 1964

  • N.G. Hadjiconstantinou (2003) ArticleTitleComment on Cercignani’s second-order slip coefficient Phys. Fluids 15 2352–2354 Occurrence Handle10.1063/1.1587155 Occurrence Handle2003PhFl...15.2352H Occurrence Handle1991924

    Article  ADS  MathSciNet  Google Scholar 

  • T. Ohwada Y. Sone K. Aoki (1989) ArticleTitleNumerical analysis of the shear and thermal creep flows of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for hard-sphere molecules Phys. Fluids A 1 1588–1599 Occurrence Handle1989PhFl....1.1588O Occurrence Handle0695.76032

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.H., Qin, R.S., Sun, Y.H. et al. Gas Flow in Microchannels – A Lattice Boltzmann Method Approach. J Stat Phys 121, 257–267 (2005). https://doi.org/10.1007/s10955-005-8416-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8416-9

Keywords

Navigation