Skip to main content
Log in

Voronoi Fluid Particle Model for Euler Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a fluid particle model based on the Voronoi tessellation that allows one to represent an inviscid fluid in a Lagrangian description. The discrete model has all the required symmetries and structure of the continuum equations and can be understood as a linearly consistent discretization of Euler’s equations. Although the model is purely inviscid, we observe that the probability distribution of the accelerations of the Voronoi fluid particles shows the presence of tails at large accelerations, what is compatible with experimental Lagrangian turbulence observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Frisch U., Turbulence (Cambridge University Press, 1995)

  • G. Falkovich K. Gawedzki M. Vergassola (2001) ArticleTitleParticles and fields in fluid turbulence Rev. Mod. Phys. 73 913 Occurrence Handle10.1103/RevModPhys.73.913 Occurrence Handle2001RvMP...73..913F Occurrence Handle2003f:76066

    Article  ADS  MathSciNet  Google Scholar 

  • A.L. Porta G.A. Voth A.M. Crawford J. Alexander E Bodenshatz (2001) ArticleTitleFluid particle accelerations in fully developed turbulence Nature 409 1017 Occurrence Handle2001Natur.409.1017L

    ADS  Google Scholar 

  • L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959)

  • J.J. Monaghan (2002) ArticleTitleSph compressible turbulence Mon. Not. R Astron. Soc. 335 IssueID3 843–852 Occurrence Handle10.1046/j.1365-8711.2002.05678.x Occurrence Handle2002MNRAS.335..843M

    Article  ADS  Google Scholar 

  • J.J. Monaghan D. Price (2001) ArticleTitleVariational principles for relativistic smoothed particle hydrodynamics Mon. Not. R Astron. Soc. 328 IssueID3 381–392 Occurrence Handle2001MNRAS.328..381M

    ADS  Google Scholar 

  • Lamb H., Hydrodynamics, 6th ed. (Cambridge University Press, 1932)

  • G.A. Kuz’min (1983) ArticleTitleIdeal incompressible hydrodynamics in terms of the vortex momentum density Phys. Let. 96A 88–90 Occurrence Handle1983PhLA...96...88K

    ADS  Google Scholar 

  • V.I. Osledets (1989) ArticleTitleOn a new way of writing the Navier Stokes equation: The Hamiltonian formalism Russ. Math. Surveys 44 210–211

    Google Scholar 

  • P. Español M. Serrano H.C. Öttinger (1999) ArticleTitleThermodynamically admissible form for discrete hydrodynamics Phys. Rev. Lett. 83 4542 Occurrence Handle1999PhRvL..83.4542E

    ADS  Google Scholar 

  • P. Español M. Revenga (2003) ArticleTitleSmoothed dissipative particle dynamics Phys. Rev. E 67 026705 Occurrence Handle2003PhRvE..67b6705E

    ADS  Google Scholar 

  • M. Serrano P. Español (2001) ArticleTitleThermodynamically consistent mesoscopic fluid particle model Phys. Rev. E 64 046115 Occurrence Handle10.1103/PhysRevE.64.046115 Occurrence Handle2001PhRvE..64d6115S

    Article  ADS  Google Scholar 

  • Wenneker I., Segal A., and Wesseling P., Computation of compressible flows on unstructured staggered grids, (2000) in ECCOMAS 2000 (Barcelona), E. Onate, G. Bugeda and B. Suarez

  • S. Friedlander and A. Lipton-Lifschitz, Localized instabilities in fluids, Handbook of Mathematical Fluid Dynamics, 2003 – math.uic.edu

  • N. Mordant J. Delour E. Léveque A. Arnéodo J.F Pinton (2002) ArticleTitleLong time correlations in Lagrangian dynamics: A key to intermittency in turbulence Phys. Rev. Lett. 89 254501–1 Occurrence Handle10.1103/PhysRevLett.89.254502 Occurrence Handle2002PhRvL..89y4502M

    Article  ADS  Google Scholar 

  • J.D. Weeks D. Chandler H.C. Andersen (1971) ArticleTitleThe Role of Repulsive Forces in Determining the Equilibrium of Simple Liquids J Chem. Phys. 54 5237 Occurrence Handle10.1063/1.1674820

    Article  Google Scholar 

  • L. Onsager (1949) ArticleTitleStatistical hydrodynamics Nuovo Cimento VI 280–287 Occurrence Handle12,60f

    MathSciNet  Google Scholar 

  • G.L. Eyink (1994) ArticleTitleEnergy dissipation without viscosity in ideal hydromechanics, Fourier analysis and local energy transfer Physica D 78 222–240 Occurrence Handle10.1016/0167-2789(94)90117-1 Occurrence Handle1994PhyD...78..222E Occurrence Handle0817.76011 Occurrence Handle95m:76020

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • N. Mordant P. Metz O. Michel J.-F. Pinton (2001) ArticleTitleMeasurement of Lagrangian velocity in fully developed turbulence Phys. Rev Lett. 87 214501–1 Occurrence Handle10.1103/PhysRevLett.87.214501 Occurrence Handle2001PhRvL..87u4501M

    Article  ADS  Google Scholar 

  • E.G. Flekkøy P.V. Coveney (1999) ArticleTitleFrom molecular to dissipative particle dynamics Phys. Rev. Lett. 83 1775 Occurrence Handle1999PhRvL..83.1775F

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Serrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serrano, M., Español, P. & Zúñiga, I. Voronoi Fluid Particle Model for Euler Equations. J Stat Phys 121, 133–147 (2005). https://doi.org/10.1007/s10955-005-8414-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8414-y

Keywords

Navigation