Skip to main content
Log in

Quantum Transport and Boltzmann Operators

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper the transport of quantum particles in time-dependent random media is studied. In the white noise limit, a quantum model for collisions is obtained. At the level of Wigner equation, this limit is described by a linear Wigner-Boltzmann equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arnold, J. L. López, P. A. Markowich and J. Soler, An analysis of Wigner–Fokker–Planck models: A Wigner function approach, Rev. Mat. Iberoamericana. 20:771–818 (2004).

    MathSciNet  Google Scholar 

  2. A. Arnold and C. Sparber, Quantum dynamical semigroups for diffusion models with Hartree interaction, Comm. Math. Phys. 251, no.1:179–207 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Bal, G. Papanicolaou, and L. Ryzhik, Radiative transport limit for the random Schrödinger equation, Nonlinearity, 15:513–529 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Brassart, Limite semi-classique de transformées de Wigner dans des milieux périodiques ou aléatoires, Thése Université de Nice-Sophia Antipolis, Novembre 2002.

  5. A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A, 121:587–616 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. A. Cañizo, J. L. López and J. Nieto, Global L1 theory and regularity for the 3D nonlinear Wigner–Poisson–Fokker–Planck system, J. Diff. Equ. 198:356–373 (2004).

    Article  Google Scholar 

  7. S. Chandrasekhar, Radiactive transfer, Dover, New York (1960).

  8. A. M. Chebotarev and F. Fagnola, Sufficient conditions for conservativity of quantum dynamical semigroups, J. Funct. Anal. 118:131–153 (1993).

    Article  MathSciNet  Google Scholar 

  9. P. Degond and C. Ringhofer, A note on quantum moment hydrodynamics and the entropy principle, C. R. Acad. Sci. Paris, Ser. I 335:967–972 (2002).

    MathSciNet  Google Scholar 

  10. P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Statist. Phys. 112:587–628 (2003).

    Article  MathSciNet  Google Scholar 

  11. P. Degond and C. Ringhofer, Binary quantum collision operators conserving mass, momentum and energy, C. R. Acad. Sci. Paris, Ser. I 336:785–790 (2003).

    MathSciNet  Google Scholar 

  12. L. Diósi, N. Gisin, J. Halliwell and I. C. Percival, Decoherent histories and quantum state diffusion, Phys. Rev. Lett. 74:203–207 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Dürr, S. Goldstein and J. L. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model, Comm. Math. Phys. 113:209–230 (1987).

    Article  MathSciNet  Google Scholar 

  14. L. Erdös and H. T. Yau, Linear Boltzmann Equation as the Weak Coupling Limit of a Random Schrödinger Equation, Comm. Pure Appl. Math. LIII:667–735 (2000).

    Google Scholar 

  15. P. Gérard, Mesures semi-classiques et ondes de Bloch. Sem. Ecole Polytechnique XVI:1–19 (1991).

    Google Scholar 

  16. P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. L:323–379 (1997).

    Google Scholar 

  17. T. Goudon and F. Poupaud, On the modeling of the transport of particles in turbulent flows, Math. Model. Num. Anal. (M2AN) 38:673–690 (2004).

    MathSciNet  Google Scholar 

  18. T. Ho, L. Landau and A. Wilkins, On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys. 5:209–298 (1993).

    Article  MathSciNet  Google Scholar 

  19. G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48:119–130 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  20. P. L. Lions and T. Paul, Sur les mesures de Wigner, Revista Mat. Iberoamericana 9:553–618 (1993).

    MathSciNet  Google Scholar 

  21. J. L. López, Nonlinear Ginzburg-Landau type approach to quantum dissipation, Phys. Rev. E 69:026110 (2004).

    ADS  Google Scholar 

  22. P. A. Markowich and N. J. Mauser, The classical limit of a self-consistent quantum-Vlasov equation in 3-D, Math. Meth. Mod. Appl. Sci. 3:109–124 (1993).

    MathSciNet  Google Scholar 

  23. A. Peraiah, An Introduction to Radiative Transfer. Methods and Applications in Astrophysics, Cambridge, 2001.

  24. F. Poupaud and A. Vasseur, Classical and quantum transport in random media, J. Math. Pure Appli. 82:711–748 (2003).

    MathSciNet  Google Scholar 

  25. H. Spohn, Derivation of the transport equation for electrons moving through random impurities, J. Stat. Phys. 17:385–412 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Wigner, On the quantum correction for thermodynamic equilibrium Phys. Rev. 40:749–759 (1932).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Bechouche.

Additional information

AMS subject classifications: 35Q40, 35S10, 81Q99, 81V99

Á Fredo. Frédéric Poupaud deceased October 13th 2004.

This research was partially supported by the EU financed network IHP-HPRN-CT-2002-00282 and by MCYT (Spain), Proyecto BFM2002–00831.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechouche, P., Poupaud, F. & Soler, J. Quantum Transport and Boltzmann Operators. J Stat Phys 122, 417–436 (2006). https://doi.org/10.1007/s10955-005-8082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8082-y

Key Words

Navigation