Skip to main content
Log in

A Numerical Approach to Copolymers at Selective Interfaces

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a model of a random copolymer at a selective interface which undergoes a localization/delocalization transition. In spite of the several rigorous results available for this model, the theoretical characterization of the phase transition has remained elusive and there is still no agreement about several important issues, for example the behavior of the polymer near the phase transition line. From a rigorous viewpoint non coinciding upper and lower bounds on the critical line are known.

In this paper we combine numerical computations with rigorous arguments to get to a better understanding of the phase diagram. Our main results include:

  • Various numerical observations that suggest that the critical line lies strictly in between the two bounds.

  • A rigorous statistical test based on concentration inequalities and super–additivity, for determining whether a given point of the phase diagram is in the localized phase. This is applied in particular to show that, with a very low level of error, the lower bound does not coincide with the critical line.

  • An analysis of the precise asymptotic behavior of the partition function in the delocalized phase, with particular attention to the effect of rare atypical stretches in the disorder sequence and on whether or not in the delocalized regime the polymer path has a Brownian scaling.

  • A new proof of the lower bound on the critical line. This proof relies on a characterization of the localized regime which is more appealing for interpreting the numerical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio and X. Y. Zhou, Free energy and some sample path properties of a random walk with random potential, J. Statist. Phys. 83, 573–622 (1996).

    Article  MathSciNet  Google Scholar 

  2. M. Biskup and F. den Hollander, A heteropolymer near a linear interface, Ann. Appl. Probab. 9, 668–687 (1999).

    MathSciNet  Google Scholar 

  3. T. Bodineau and G. Giacomin, On the localization transition of random copolymers near selective interfaces, J. Statist. Phys. 117, 801–818 (2004).

    Article  MathSciNet  Google Scholar 

  4. E. Bolthausen and G. Giacomin, Periodic copolymers at selective interfaces: A large deviations approach, Ann. Appl. Probab. 15, 963–983 (2005).

    Article  MathSciNet  Google Scholar 

  5. E. Bolthausen and F. den Hollander, Localization transition for a polymer near an interface, Ann. Probab. 25, 1334–1366 (1997).

    MathSciNet  Google Scholar 

  6. R. Bundschuh and T. Hwa, Statistical mechanics of secondary structures formed by random RNA sequences, Phys. Rev. E 65, 031903 (22 pages) (2002).

    Google Scholar 

  7. F. Caravenna and G. Giacomin, On constrained annealed bounds for linear chain pinning models, Electron. Comm. Probab. 10, 179–189 (2005).

    MathSciNet  Google Scholar 

  8. F. Caravenna, G. Giacomin and L. Zambotti, A renewal theory approach to periodic inhomogeneous polymer models, preprint (2005). math.PR/0507178

  9. M. S. Causo and S. G. Whittington, A Monte Carlo investigation of the localization transition in random copolymers at an interface, J. Phys. A: Math. Gen. 36, L189–L195 (2003).

    Article  ADS  Google Scholar 

  10. A. Dembo and O. Zeitouni, Large deviations techniques and applications, 2nd Ed., (Springer–Verlag, New York 1998).

    Google Scholar 

  11. J.–D. Deuschel, G. Giacomin and L. Zambotti, Scaling limits of equilibrium wetting models in (1 + 1)–dimension, Probab. Theory Rel. Fields 119, 471–500 (2005).

    MathSciNet  Google Scholar 

  12. W. Feller, An introduction to probability theory and its applications, Vol. I, 3rd Ed, (John Wiley & Sons, Inc., New York–London–Sydney 1968).

  13. D. S. Fisher, Critical behavior of random transverse-field Ising spin chains, Phys. Rev. B 51, 6411–6461 (1995).

    ADS  Google Scholar 

  14. G. Giacomin, Localization phenomena in random polymer models, preprint (2004), available on the web page of the author.

  15. G. Giacomin and F. L. Toninelli, Estimates on path delocalization for copolymers at interfaces, Probab. Theory Rel. Fields. (Online first).

  16. T. Garel, D. A. Huse, S. Leibler and H. Orland, Localization transition of random chains at interfaces, Europhys. Lett. 8, 9–13 (1989).

    ADS  Google Scholar 

  17. P. Le Doussal, C. Monthus and D. S. Fisher, Random walkers in one-dimensional random environments: Exact renormalization group analysis, Phys. Rev. E 59(3), 4795–4840 (1999).

    Google Scholar 

  18. M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs Vol. 89, American Mathematical Society (2001).

  19. M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. on Mod. and Comp. Simul. 8, 3–30 (1998).

    Google Scholar 

  20. C. Monthus, On the localization of random heteropolymers at the interface between two selective solvents, Eur. Phys. J. B 13, 111–130 (2000).

    ADS  Google Scholar 

  21. C. Monthus, T. Garel and H. Orland, Copolymer at a selective interface and two dimensional wetting: A grand canonical approach, Eur. Phys. J. B 17, 121–130 (2000).

    Article  ADS  Google Scholar 

  22. T. Morita, Statistical mechanics of quenched solid solutions with application to magnetically dilute alloys, J. Math. Phys. 5, 1401–1405 (1966).

    Google Scholar 

  23. D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd Ed., (Springer-Verlag, Berlin 1994).

    Google Scholar 

  24. Ya. G. Sinai, A random walk with a random potential, Theory Probab. Appl. 38, 382–385 (1993).

    Article  MathSciNet  Google Scholar 

  25. C. E. Soteros and S. G. Whittington, The statistical mechanics of random copolymers, J. Phys. A: Math. Gen. 37, R279–R325.

  26. S. Stepanow, J.-U. Sommer and I. Ya. Erukhimovich, Localization transition of random copolymers at interfaces, Phys. Rev. Lett. 81, 4412–4416 (1998).

    Article  ADS  Google Scholar 

  27. A. Trovato and A. Maritan, A variational approach to the localization transition of heteropolymers at interfaces, Europhys. Lett. 46, 301–306 (1999).

    Article  ADS  Google Scholar 

  28. R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria (2004). ISBN 3-900051-07-0. URL http://www.R-project.org

  29. C. Ané, S. Blachére, D. Chafaï, P. Fougéres, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les inégalités de Sobolev Logarithmiques, Panoramas et Synthéses, 10, Sociét´ Mathématique de France 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Caravenna.

Additional information

2000 MSC: 60K37, 82B44, 82B80

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caravenna, F., Giacomin, G. & Gubinelli, M. A Numerical Approach to Copolymers at Selective Interfaces. J Stat Phys 122, 799–832 (2006). https://doi.org/10.1007/s10955-005-8081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8081-z

Key Words

Navigation