Skip to main content
Log in

Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We evaluate the virial coefficients Bk for \(k\leq 10\) for hard spheres in dimensions \(D=2,\cdots,8.\) Virial coefficients with k even are found to be negative when \(D\geq 5. \) This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when \(D\geq 5\). Further analysis provides evidence that negative virial coefficients will be seen for some k > 10 for D = 4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D = 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. van der Waals, Proc. Kon. Acad. V. Wetensch, Amsterdam, 1:138 (1899).

    Google Scholar 

  2. L. Boltzmann, Proc. Sect. Sci. K. Akad. Wet. (Amsterdam), (1899).

  3. J. J. van Laar, Proc. Kon. Acad. V. Wetensch, Amsterdam, 1:273 (1899).

    Google Scholar 

  4. B. J. Alder and T. E. Wainwright, Phase transition for a hard sphere system.J. Chem. Phys. 27:1208–1209 (1957).

    Article  Google Scholar 

  5. W. W. Wood and J. D. Jacobson, Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres. J. Chem. Phys. 27:1207–1208 (1957).

    Article  Google Scholar 

  6. J. S. Rowlinson, The virial expansion in two dimensions, Mol. Phys. 7:593–594 (1964).

    Article  MathSciNet  Google Scholar 

  7. P. C. Hemmer, Virial Coefficients for the Hard-Core Gas in Two Dimensions. J. Chem. Phys. 42:1116–1118 (1964).

    Article  MathSciNet  Google Scholar 

  8. N. Clisby and B. M. McCoy, Analytical calculation of $B_4$ for hard spheres in even dimensions. J. Stat. Phys. 114:1343–1361 (2004).

    Article  MATH  Google Scholar 

  9. I. Lyberg, The Fourth Virial Coefficient of a Fluid of Hard Spheres in Odd Dimensions. J. Stat. Phys. 119:747–764 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller, Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21:1087–1092 (1953).

    Article  MATH  Google Scholar 

  11. M. N. Rosenbluth and A. W. Rosenbluth, Further Results on Monte Carlo Equations of State. J. Chem. Phys. 22:881–884 (1954).

    Article  Google Scholar 

  12. F. H. Ree and W. G. Hoover, Fifth and sixth virial coefficients for hard spheres and hard discs. J. Chem. Phys. 40:939–950 (1964).

    Article  MathSciNet  Google Scholar 

  13. F. H. Ree and W. G. Hoover, Reformulation of the Virial Series for Classical Fluids. J. Chem. Phys. 41:1635–1645 (1964).

    Article  MathSciNet  Google Scholar 

  14. F. H. Ree and W. G. Hoover, Seventh virial coefficients for hard spheres and hard discs. J. Chem. Phys. 46:4181–4196 (1967).

    Article  Google Scholar 

  15. E. J. Janse van Rensburg, Virial coefficients for hard discs and hard spheres. J. Phys. A 26:4805–4818 (1993).

    Article  Google Scholar 

  16. A. Y. Vlasov, X. M. You and A. J. Masters, Monte–Carlo integration for virial coefficients re–visited: hard convex bodies, spheres with a square–well potential and mixtures of hard spheres. Mol. Phys. 100:3313–3324 (2002).

    Article  Google Scholar 

  17. J. Kolafa, S. Labiacute;k and A. Malijevský, Accurate equation of state of the hard sphere fluid in stable and metastable regions. Phys. Chem. Chem. Phys. 6:2335–2340 (2004).

    Article  Google Scholar 

  18. S. Labík, J. Kolafa and A. Malijevský, Virial coefficients of hard spheres and hard discs up to the ninth. Phys. Rev. E 71:021105 (2005).

    Article  Google Scholar 

  19. F. H. Ree and W. G. Hoover, On the signs of the hard sphere virial coefficients. J. Chem. Phys. 40:2048–2049 (1964).

    Article  MathSciNet  Google Scholar 

  20. M. Bishop, A. Masters and J. H. R. Clarke, Equation of state of hard and Weeks–Chandler–Anderson hyperspheres in four and five dimensions. J. Chem. Phys.110:11449–11453 (1999).

    Article  Google Scholar 

  21. M. Bishop, A. Masters and A. Y. Vlasov, Higher virial coefficients of four and five dimensional hard hyperspheres. J. Chem. Phys. 121:6884–6886 (2004).

    Article  Google Scholar 

  22. M. Bishop, A. Masters and A. Y. Vlasov, The Eighth Virial Coefficient of Four and Five Dimensional Hard Hyperspheres. J. Chem. Phys. 122:154502 (2005).

    Article  Google Scholar 

  23. M. Bishop, P. A. Whitlock and D. Klein, The Structure of Hyperspherical Fluids in Various Dimensions. J. Chem. Phys. 122:074508 (2005).

    Article  Google Scholar 

  24. M. Bishop and P. A. Whitlock. The Equation of State of Hard Hyperspheres in Four and Five Dimensions. J. Chem. Phys. 123: 014507 (2005).

    Article  Google Scholar 

  25. H. L. Frisch, N. River and D. Wyler, Classical Hard-Sphere Fluid in Infinitely Many Dimensions. Phys. Rev. Lett. 54:2061–2063 (1985).

    Article  MathSciNet  Google Scholar 

  26. H. L. Frisch and J. K. Percus, High dimensionality as an organizing device for classical fluids. Phys. Rev. E 60:2942–2948 (1999).

    Article  MathSciNet  Google Scholar 

  27. N. Clisby and B. M. McCoy, Negative virial coefficients and the dominance of loose packed diagrams for $D$–dimensional hard spheres. J. Stat. Phys. 114:1361–1392 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Clisby, Negative Virial Coefficients for Hard Spheres. PhD thesis, Stony Brook University, Stony Brook, New York, May (2004).

  29. K. W. Kratky, A New Graph Expansion of Virial Coefficients. J. Stat. Phys. 27:533–551 (1982).

    Article  MathSciNet  Google Scholar 

  30. J. E. Mayer and M. G. Mayer, Statistical Mechanics. Wiley (1940).

  31. J. K. Percus and G. J. Yevick, Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 110:1–13 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. K. Percus (eds.) The Pair Distribution Function in Classical Statistical Mechanics, in H. L. Frisch and J. L. Lebowitz, The Equilibrium Theory of Classical Fluids, pp. II–33–II–1733. (W. A. Benjamin, Inc., New York 1964).

  33. B. D. McKay, Practical Graph Isomorphism. Congressus Numerantium, 30:45–87 (1981).

    MathSciNet  MATH  Google Scholar 

  34. H. N. Gabow and E. W. Myers, Finding All Spanning Trees of Directed and Undirected Graphs. SIAM J. Comput. 7:280–287 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  35. R. M. Ziff, Four-tap shift-register-sequence random-number generator. Comp. in Phys. 12:385–392 (1998).

    Article  Google Scholar 

  36. D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Addison-Wesley, third edition (1997) Vol 1.

  37. S. Banerjia and R. A. Dwyer, Generating Random Points in a Ball. Commun. Stat. Sim. 22:1205–1209 (1993).

    Article  MathSciNet  Google Scholar 

  38. D. J. Rose, R. E. Tarjan and G. S. Lueker, Algorithmic Aspects of Vertex Elimination on Graphs. SIAM J. Comput. 5:266–283 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  39. R. E. Tarjan and M. Yannakakis, Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs. SIAM J. Comput. 13:566–579 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  40. R. E. Tarjan, Decomposition by Clique Separators. Disc. Math. 55:221–232 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  41. S. H. Whitesides, An Algorithm for Finding Clique Cut-Sets. Inf. Proc. Lett. 12:31–32 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  42. B. J. Alder and T. E. Wainright, Phase Transition in Elastic Disks. Phys. Rev. 127:359–361 (1962).

    Article  Google Scholar 

  43. W. W. Wood, Monte Carlo studies of simple liquid models, in Physics of Simple Liquids, (North Holland, Amsterdam 1968) pp. 115–2345.

  44. J. P. J. Michels and N. J. Trappeniers, Dynamical computer simulations on hard hyperspheres in four- and five-dimensional space. Phys. Lett. 104:425–429 (1984).

    Article  Google Scholar 

  45. A. Jaster, Computer simulations of the two-dimensional melting transition using hard disks. Phys. Rev. E 59:2594–2602 (1999).

    Article  Google Scholar 

  46. J. G. Dash, History of the search for continuous melting. Rev. Mod. Phys. 71:1737–1743 (1999).

    Article  Google Scholar 

  47. K. Binder, S. Sengupta and P. Nielaba, The liquid–solid transition of hard discs: first-order transition or Kosterlitz–Thouless–Halperin–Nelson–Young scenario? J. Phys.: Condens. Matter 14:2323–2333 (2002).

    Google Scholar 

  48. A. Jaster, The hexatic phase of the two-dimensional hard disk system. Phys. Lett. A 330:120–125 (2004).

    Article  Google Scholar 

  49. B. J. Alder and T. E. Wainwright, Studies in molecular dynamics 2: behavior of small numbers of elastic hard spheres. J. Chem. Phys. 33:1439 (1960).

    Article  MathSciNet  Google Scholar 

  50. W. G. Hoover and F. H. Ree, Melting transition and communal entropy for hard spheres. J. Chem. Phys. 49:3609–3617 (1968).

    Article  Google Scholar 

  51. G. Nebe and N. J. A. Sloane, A Catalogue of Lattices, http://www.research.att.com~njas/lattices/index.html.

  52. J. L. Lebowitz and O. Penrose, Convergence of virial expansion. J. Math. Phys. 5:841 (1964).

    Article  MathSciNet  Google Scholar 

  53. M. E. Fisher, The Nature of Critical Points, in Lectures in Theoretical Physics VII, (University of Colorado Press, Boulder, Colorado 1965) pp. 73–109.

  54. S. N. Isakov, Nonanalytic Features of the First Order Phase Transition in the Ising Model. Commun. Math. Phys. 95:427–443 (1984).

    Article  MathSciNet  Google Scholar 

  55. J. Groeneveld, Two Theorems on Classical Many-Particle Systems. Phys. Lett. 3:50–51 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  56. M. E. Fisher, Bounds for the Derivatives of the Free Energy and the Pressure of a Hard-Core System near Close Packing. J. Chem. Phys. 42:3852–3856 (1965).

    Article  MathSciNet  Google Scholar 

  57. W. G. Hoover, Bounds on the Configurational Integral for Hard Parallel Squares and Cubes. J. Chem. Phys. 43:371–374 (1965).

    Article  MathSciNet  Google Scholar 

  58. E. Thiele, Equation of State for Hard Spheres. J. Chem. Phys. 39:474–479 (1963).

    Article  Google Scholar 

  59. M. S. Wertheim, Exact Solution of the Percus-Yevick Integral Equation for Hard Spheres. Phys. Rev. Lett. 10:321–323 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  60. M. S. Wertheim, Analytic solution of the Percus–Yevick equation. J. Math Phys. 5:643 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  61. H. Reiss, H. L. Frisch and J. L. Lebowitz, Statistical mechanics of rigid spheres. J. Chem. Phys. 31:369–380 (1959).

    Article  MathSciNet  Google Scholar 

  62. E. A. Guggenheim, Variations on van der Waals equation of state for high densities. Mol. Phys. 9:199 (1965).

    Article  Google Scholar 

  63. N. F. Carnahan and K. E. Starling, Equation of State for Nonattracting Rigid Spheres. J. Chem. Phys. 51:635–636 (1969).

    Article  Google Scholar 

  64. J. I. Goldman and J. A. White, Equation of state for the hard-sphere gas. J. Chem. Phys. 89:6403–6405 (1988).

    Article  Google Scholar 

  65. R. Hoste and J. D. Dael, Equation of state for hard–sphere and hard–disk systems. J. Chem Soc. Faraday Trans. 2 80:477–488 (1984).

    Article  Google Scholar 

  66. J. D. Bernal and J. Mason, Co–ordination of randomly packed spheres. Nature 188:910–911 (1960).

    Article  Google Scholar 

  67. J. D. Bernal, Bakerian Lecture 1962 – The structure of liquids. Proc. Roy. Soc. Lond. A 280:299–322 (1964).

    Article  Google Scholar 

  68. G. D. Scott, Packing of equal spheres. Nature 188:908–909 (1960).

    Article  MATH  Google Scholar 

  69. J. L. Finney, Random packings and the structure of simple liquids I. The geometry of random close packing. Proc. Roy. Soc. Lond. A 319:479–493 (1970).

    Article  Google Scholar 

  70. E. J. Le Fevre, Equation of State for Hard-sphere Fluid. Nature Phys. 235:20 (1972).

    Article  Google Scholar 

  71. D. Ma and G. Ahmadi, An equation of state for dense rigid sphere gases. J. Chem. Phys. 84:3449 (1986).

    Article  Google Scholar 

  72. Y. Song, R. M. Stratt and A. E. Mason, The equation of state of hard spheres and the approach to random closest packing. J. Chem. Phys. 88:1126–1133 (1988).

    Article  Google Scholar 

  73. S. Jasty, M. Al-Naghy and M. de Llano, Critical exponent for glassy packing of rigid spheres and disks. Phys. Rev. A 35:1376–1381 (1987).

    Article  MathSciNet  Google Scholar 

  74. S. Torquato, Mean Nearest–Neighbor Distance in Random Packings of Hard $D$–Dimensional Spheres. Phys. Rev. Lett. 74:2156–2159 (1995).

    Article  Google Scholar 

  75. S. Torquato, Nearest–neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51:3170–3182 (1995).

    Article  Google Scholar 

  76. B. C. Freasier and D. J. Isbister, A remark on the Percus–Yevick approximation in higher dimensions. Mol. Phys. 42:927–936 (1981).

    Article  Google Scholar 

  77. E. Leutheusser, Exact Solution of the Percus–Yevick Equation for a Hard–Core Fluid in Odd Dimensions. Physica A 127:667–676 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Robles, M. Löpez de Haro and A. Santos, Equation of state of a seven-dimensional hard-sphere fluid. Percus–Yevick theory and molecular-dynamics simulations. J. Chem. Phys. 120:9113–9122 (2004).

    Article  Google Scholar 

  79. A. Baram and M. Luban, Divergence of the virial series for hard discs and hard spheres at closest packing. J. Phys. C: Solid St. Phys. 12:L659–L664 (1979).

    Article  Google Scholar 

  80. I. C. Sanchez, Virial coefficients and close–packing of hard spheres and disks. J. Chem. Phys. 101:7003–7006 (1994).

    Article  Google Scholar 

  81. D. S. Gaunt and G. S. Joyce, Virial expansions for hard-core fluids. J. Phys. A 13:L211–L216 (1980).

    Article  Google Scholar 

  82. A. J. Guttmann, Asymptotic Analysis of Power-Series Expansions, in C. Domb and J. Lebowitz, editors, Phase Transitions and Critical Phenomena, volume 13, chapter 1, (Academic Press, 1989) pp. 1–234.

  83. R. J. Baxter Hard hexagons – exact solution. J. Phys. A 13:L61–70 (1980).

    Article  MathSciNet  Google Scholar 

  84. M. P. Richey and C. A. Tracy, Equation of state and isothermal compressibility for the hard hexagon model in the disordered regime. J. Phys. A 20:L1121–L1126 (1987).

    Article  MathSciNet  Google Scholar 

  85. G. S. Joyce, On the Hard-Hexagon Model and the Theory of Modular Functions. Phil. Trans. R. Soc. Lond. A 325:643–702 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  86. R. J. Baxter, Three-Colorings of the Square Lattice: A Hard Squares Model. J. Math. Phys. 11:3116–3124 (1970).

    Article  MATH  Google Scholar 

  87. W. G. Hoover and A. G. de Rocco, Sixth and Seventh Virial Coefficients for the Parallel Hard-Cube Model. J. Chem. Phys. 36:3141–3161 (1962).

    Article  Google Scholar 

  88. G. E. Uhlenbeck and G. W. Ford, The Theory of Linear Graphs with Applications to the Theory of the Virial Development of the Properties of Gases. In Studies in Statistical Mechanics, (North Holland 1962) Vol 1, pp. 119–211.

  89. A. Baram and J. S. Rowlinson, Studies of the Gaussian model 1. The one-component system. Mol. Phys. 74:707–713 (1991).

    Article  Google Scholar 

  90. A. J. Guttmann and G. S. Joyce, On a new method of series analysis in lattice statistics. J. Phys. A 5:L81–L84 (1972).

    Article  Google Scholar 

  91. G. S. Joyce and A. J. Guttmann, A New Method of Series Analysis, In P. R. Graves-Morris, editor, Padé Approximants and Their Applications, (Academic Press 1973) pp. 163–167.

  92. D. L. Hunter and G. A. Baker, Methods of Series Analysis. I. Comparison of Current Methods Used in the Theory of Critical Phenomena. Phys. Rev. B 7:3346–3376 (1973).

    Article  Google Scholar 

  93. D. L. Hunter and G. A. Baker, Methods of series analysis. III. Integral approximant methods. Phys. Rev. B 19:3808–3821 (1979).

    Article  Google Scholar 

  94. M. E. Fisher and H. Au-Yang, Inhomogeneous differential approximants for power series. 12:1677–1692 (1979).

    Google Scholar 

  95. N. Clisby, Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions - Collection of Tables, http://www.ms.unimelb.edu.au~nclisby/papers/papers.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Clisby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clisby, N., McCoy, B.M. Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions. J Stat Phys 122, 15–57 (2006). https://doi.org/10.1007/s10955-005-8080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8080-0

Key Words

Navigation