Skip to main content
Log in

Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models

IV. Chromatic Polynomial with Cyclic Boundary Conditions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the chromatic polynomial P G (q) for m× n square- and triangular-lattice strips of widths 2≤ m ≤ 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin–Kasteleyn representation for such lattices and obtain the accumulation sets of chromatic zeros in the complex q-plane in the limit n→∞. We find that the different phases that appear in this model can be characterized by a topological parameter. We also compute the bulk and surface free energies and the central charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Kasteleyn and C. M. Fortuin. J. Phys. Soc. Japan 26 (Suppl.): 11 (1969); C. M. Fortuin and P. W. Kasteleyn, Physica 57:536 (1972).

  2. V. Pasquier. J. Phys. A 20:L1229 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  3. G. E. Andrews, R. J. Baxter and P. J. Forrester, J. Stat. Phys. 35:193 (1984).

    Article  MathSciNet  Google Scholar 

  4. D. A. Kurtze and M. E. Fisher. Phys. Rev. B 20:2785 (1979).

    Article  ADS  Google Scholar 

  5. Y. Shapir. J. Phys. A 15:L433 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Dhar. Phys. Rev. Lett. 51:853 (1983).

    ADS  MathSciNet  Google Scholar 

  7. D. Poland. J. Stat. Phys. 35:341 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Baram and M. Luban. Phys. Rev. A 36:760 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. J. Guttmann. J. Phys. A 20:511 (1987).

    ADS  MathSciNet  Google Scholar 

  10. S.-N. Lai and M. E. Fisher. J. Chem. Phys. 103:8144 (1995).

    ADS  Google Scholar 

  11. Y. Park and M. E. Fisher. Phys. Rev. E 60:6323 (1999), cond-mat/9907429.

    Google Scholar 

  12. S. Todo. Int. J. Mod. Phys C 10:517 (1999), cond-mat/9703176.

    Google Scholar 

  13. D. C. Brydges and J. Z. Imbrie. Ann. Math. 158:1019 (2003), math-ph/0107005; J. Stat. Phys. 110:503 (2003), math-ph/0203055.

  14. C. N. Yang and T. D. Lee. Phys. Rev. 87:404 (1952). T. D. Lee and C. N. Yang, ibid. 87:410 (1952).

  15. P. J. Kortman and R. B. Griffiths, Phys. Rev. Lett. 27:1439 (1971).

    Article  ADS  Google Scholar 

  16. M. E. Fisher. Phys. Rev. Lett. 40:1610 (1978).

    Article  ADS  Google Scholar 

  17. O. F. de Alcantara Bonfim, J. E. Kirkham and A. J. McKane. J. Phys. A 14:2391 (1981).

    ADS  Google Scholar 

  18. G. Parisi and N. Sourlas. Phys. Rev. Lett. 46:871 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  19. J. L. Cardy. Phys. Rev. Lett. 54:1354 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Itzykson, H. Saleur and J.-B. Zuber. Europhys. Lett. 2:91 (1986).

    ADS  Google Scholar 

  21. R. J. Baxter. J. Phys. A 19:2821 (1986); ibid. 20:5241 (1987).

  22. J. Salas and A. D. Sokal, J. Stat. Phys. 104:609 (2001), cond-mat/0004330.

    Google Scholar 

  23. J. L. Jacobsen and J. Salas. J. Stat. Phys. 104: 701 (2001), cond-mat/0011456.

    Google Scholar 

  24. J. L. Jacobsen, J. Salas, and A. D. Sokal. J. Stat. Phys. 112:921 (2003), cond-mat/0204587.

    Google Scholar 

  25. V. Pasquier and H. Saleur, Nucl. Phys. B 330:523 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  26. H. Saleur. Commun. Math. Phys. 132:657 (1990); Nucl. Phys. B 360:219 (1991).

  27. R. J. Baxter. J. Phys. C 6:L445 (1973).

    ADS  Google Scholar 

  28. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London–New York, 1982).

    Google Scholar 

  29. B. Nienhuis, Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz (Eds.) in (Academic, London, 1987).

  30. R. J. Baxter. Proc. Roy. Soc. London A 383:43 (1982).

    Google Scholar 

  31. J. L. Jacobsen and H. Saleur, The antiferromagnetic transition for the square-lattice Potts model, cond-mat/0512056.

  32. R. J. Baxter, H. N. V. Temperley and S. E. Ashley. Proc. Roy. Soc. London A 358:535 (1978).

    Google Scholar 

  33. J. L. Jacobsen, J. Salas and A. D. Sokal. J. Stat. Phys. 119:1153 (2005), cond-mat/0401026.

    Google Scholar 

  34. S. Beraha, J. Kahane and N. J. Weiss. Proc. Nat. Acad. Sci. USA 72:4209 (1975). For a slightly more general theorem and a complete list of references see A.D. Sokal, Combin. Probab. Comput. 13:221 (2004), cond-mat/0101197.

    Google Scholar 

  35. N. L. Biggs, R. M. Damerell and D. A. Sands, J. Combin. Theory B 12:123 (1972).

    Article  MathSciNet  Google Scholar 

  36. R. Shrock and S.-H. Tsai. Physica A 275: 429 (2000), cond-mat/9907403.

    Google Scholar 

  37. S.-C. Chang and R. Shrock. Physica A 290: 402 (2001), cond-mat/0004161.

    Google Scholar 

  38. S.-C. Chang and R. Shrock. Physica A 316: 335 (2002), cond-mat/0201223.

    Google Scholar 

  39. S.-C. Chang and R. Shrock. Ann. Phys. (N.Y.) 290: 124 (2001), cond-mat/0004129.

    Google Scholar 

  40. S.-C. Chang and R. Shrock. Physica A 347:314 (2005), cond-mat/0404524.

    Google Scholar 

  41. S.-C. Chang and R. Shrock. Physica A 346:400 (2005), cond-mat/0404373.

    Google Scholar 

  42. M. Noy and A. Ribó. Adv. Appl. Math. 32:350 (2004).

    Article  Google Scholar 

  43. S.-C. Chang and R. Shrock. Physica A 296: 131 (2001), cond-mat/0005232.

    Google Scholar 

  44. N.J.A. Sloane. Sloane’ s On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/index.html

  45. I. Gradshtein and I. Ryzhik. Tables of Integrals, Series, and Products (Academic Press, New York, 1980).

    Google Scholar 

  46. S.-C. Chang and R. Shrock, Physica A 347:314 (2005), cond-mat/0404524.

    Google Scholar 

  47. D. R. Woodall. Discrete Math. 172:141 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  48. H. W. J. Blöte, J. L. Cardy and M. P. Nightingale. Phys. Rev. Lett. 56:742 (1986).

    Article  ADS  Google Scholar 

  49. J. L. Cardy and I. Peschel. Nucl. Phys. B 300:377 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  50. J. O. Indekeu, M. P. Nightingale, and W. V. Wang. Phys. Rev. B 34:330 (1986).

    Article  ADS  Google Scholar 

  51. V. Privman, in Finite Size Scaling and Numerical Simulation of Statistical Physics, pp. 1–98 (World Scientific, Singapore, 1990).

    Google Scholar 

  52. B. Duplantier and H. Saleur, Nucl. Phys. B 290:291 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  53. R. J. Baxter. J. Math. Phys. 11:784 (1970).

    MathSciNet  Google Scholar 

  54. B. Nienhuis. Phys. Rev. Lett. 49:1062 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  55. M. T. Batchelor, J. Suzuki and C. M. Yung. Phys. Rev. Lett. 73:2646 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  56. A. Lenard, Phys. Rev. 162:162 (1967) in E. H. Lieb (Ed.) at pp. 169-170.

  57. R. J. Baxter. J. Math. Phys. 11:3116 (1970).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Lykke Jacobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, J.L., Salas, J. Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. J Stat Phys 122, 705–760 (2006). https://doi.org/10.1007/s10955-005-8077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8077-8

Key Words

Navigation