Skip to main content
Log in

New Characterizations of the Region of Complete Localization for Random Schrödinger Operators

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the region of complete localization in a class of random operators which includes random Schrödinger operators with Anderson-type potentials and classical wave operators in random media, as well as the Anderson tight-binding model. We establish new characterizations or criteria for this region of complete localization, given either by the decay of eigenfunction correlations or by the decay of Fermi projections. (These are necessary and sufficient conditions for the random operator to exhibit complete localization in this energy region.) Using the first type of characterization we prove that in the region of complete localization the random operator has eigenvalues with finite multiplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6: 1163–1182 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Elgart, A., Naboko, S., Schenker, J. H., Stolz, G.: Moment analysis for localization in random schrödinger operators. Invent. Math. (2005) In press.

  3. Aizenman, M., Graf, G. M.: Localization bounds for an electron gas. J. Phys. A: Math. Gen. 31: 6783–6806, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. Aizenman, M., Molchanov, S.: Localization at large disorder and extreme energies: an elementary derivation. Commun. Math. Phys. 157: 245–278 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. Aizenman, M., Schenker, J., Friedrich, R., Hundertmark, D.: Finite volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224: 219–253 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non commutative geometry of the quantum Hall effect. J. Math. Phys. 35: 5373–5451 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  7. Barbaroux, J. M., Combes, J. M., Hislop, P. D.: Localization near band edges for random Schrödinger operators. Helv. Phys. Acta 70: 16–43 (1997).

    MathSciNet  MATH  Google Scholar 

  8. Bouclet, J. M., Germinet, F., Klein, A.: Sub-exponential decay of operator kernels for functions of generalized Schrödinger operators. Proc. Amer. Math. Soc. 132: 2703–2712 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouclet, J. M., Germinet, F., Klein, A., Schenker, J. H.: Linear response theory for magnetic Schrdinger Schrödinger operators in disordered media. J. Funct. Anal. 226: 301–372 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108: 41–66 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. Combes, J. M., Germinet, F.: Edge and impurity effects on quantization of hall currents. Commun. Math. Phys. 256: 159–180 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. Combes, J. M., Germinet, F., Hislop, P.: On the quantization of Hall currents in presence of disorder, to appear in the Proceedings of the Conference Q-Math9 (Giens, 2004).

  13. Combes, J. M., Hislop, P. D.: Localization for some continuous, random Hamiltonian in d-dimension. J. Funct. Anal. 124: 149–180 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  14. Combes, J. M., Hislop, P. D.: Landau Hamiltonians with random potentials: localization and the density of states. Commun. Math. Phys. 177: 603–629 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. Combes, J. M., Hislop, P. D., Tip, A.: Band edge localization and the density of states for acoustic and electromagnetic waves in random media. Ann. Inst. H. Poincare Phys. Theor. 70: 381–428 (1999).

    MathSciNet  MATH  Google Scholar 

  16. Damanik, D., Sims, R., Stolz, G.: Localization for one dimensional, continuum, Bernoulli-Anderson models. Duke Math. J. 114: 59–100 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. Damanik, D., Stollmann, P.: Multi-scale analysis implies strong dynamical localization. Geom. Funct. Anal. 11: 11–29 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. Del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: What is Localization? Phys. Rev. Lett. 75: 117–119 (1995).

    Article  Google Scholar 

  19. Del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one pertubations and localization. J. d'Analyse Math. 69: 153–200 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. Dobrushin, R., Shlosman, S.: Completely analytical Gibbs fields. Prog in Phys. 10: 347–370 (1985).

    MathSciNet  MATH  Google Scholar 

  21. Dobrushin, R., Shlosman, S.: Completely analytical interactions. J. Stat. Phys. 46: 983–1014 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  22. von Dreifus, H.: On the effects of randomness in ferromagnetic models and Schrödinger operators. Ph.D. thesis, New York University (1987)

  23. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124: 285–299 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  24. Elgart, A., Graf, G. M., Schenker, J. H.: Equality of the bulk and edge hall conductances in a mobility gap. Commun Math. Phys (2005) In press.

  25. Figotin, A., Klein, A.: Localization phenomenon in gaps of the spectrum of random lattice operators. J. Stat. Phys. 75: 997–1021 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  26. Figotin, A., Klein, A.: Localization of electromagnetic and acoustic waves in random media. Lattice model. J. Stat. Phys. 76: 985–1003 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  27. Figotin, A., Klein, A.: Localization of classical waves I: Acoustic waves. Commun. Math. Phys. 180: 439–482 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  28. Figotin, A., Klein, A.: Localization of classical waves II: Electromagnetic waves. Commun. Math. Phys. 184: 411–441 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  29. Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101: 21–46 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  30. Fröhlich, J., Spencer, T.: Absence of diffusion with Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88: 151–184 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  31. Germinet, F.: Dynamical localization II with an application to the almost Mathieu operator. J. Stat Phys. 95: 273–286 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  32. Germinet, F., De Biévre, S.: Dynamical localization for discrete and continuous random Schrödinger operators. Commun. Math. Phys. 194: 323–341 (1998).

    Article  MATH  Google Scholar 

  33. Germinet, F., Klein, A.: Bootstrap multiscale analysis and localization in random media. Commun. Math. Phys. 222: 415–448 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  34. Germinet, F., Klein, A.: Operator kernel estimates for functions of generalized Schrödinger operators. Proc. Amer. Math. Soc. 131: 911–920 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  35. Germinet, F, Klein, A.: Explicit finite volume criteria for localization in continuous random media and applications. Geom. Funct. Anal. 13: 1201–1238 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  36. Germinet, F., Klein, A.: High disorder localization for random Schrödinger operators through explicit finite volume criteria. Markov Process. Related Fields. 9: 633–650 (2003).

    MathSciNet  MATH  Google Scholar 

  37. Germinet, F., Klein, A.: A characterization of the Anderson metal-insulator transport transition. Duke Math. J. 124: 309–351 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  38. Germinet, F., Klein, A.: Localization zoology for Schrödinger operators. In preparation.

  39. Germinet, F, Klein, A., Schenker, J.: Dynamical delocalization in random Landau Hamiltonians. To appear in Annals of Math.

  40. Kirsch, W., Stollman, P., Stolz, G.: Localization for random perturbations of periodic Schrödinger operators. Random Oper. Stochastic Equations 6: 241–268 (1998).

    MathSciNet  MATH  Google Scholar 

  41. Klein, A.: Multiscale analysis and localization of random operators. In Random Schrodinger operators: methods, results, and perspectives. Panorama & Synthése, Société Mathématique de France. To appear.

  42. Klein, A., Koines, A., Seifert, M.: Generalized eigenfunctions for waves in inhomogeneous media. J. Funct. Anal. 190: 255–291 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  43. Klein, A., Koines, A.: A general framework for localization of classical waves: II. Random media. Math. Phys. Anal. Geom. 7: 151–185 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  44. Klein, A., Lacroix, J., Speis, A.: Localization for the Anderson model on a strip with singular potentials. J. Funct. Anal. 94: 135–155 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  45. Klein, A., Molchanov, S.: Simplicity of eigenvalues in the Anderson model. J. Stat. Phys. (2005) In press.

  46. Klopp, F.: Localization for continuous random Schrödinger operators. Commun. Math. Phys. 167: 553–569 (1995).

    Article  MATH  Google Scholar 

  47. Klopp, F.: Weak disorder localization and Lifshitz tails. Commun. Math. Phys. 232: 125–155 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  48. Klopp, F.: Weak disorder localization and Lifshitz tails: continuous Hamiltonians. Ann. I. H. P. 3: 711–737 (2002).

    MathSciNet  MATH  Google Scholar 

  49. Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Comm. Math. Phys. 177: 709–725 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  50. Pastur, L., Figotin, A.:Spectra of Random and Almost-Periodic Operators. Heidelberg: Springer-Verlag, 1992

    Book  MATH  Google Scholar 

  51. Reed, M., Simon, B.: phMethods of Modern Mathematical Physics I: Functional Analysis, revised and enlarged edition. Academic Press, 1980.

  52. Simon, B.: Cyclic vectors in the Anderson model. Special issue dedicated to Elliott H. Lieb. Rev. Math. Phys. 6: 1183–1185 (1994).

    Article  MathSciNet  Google Scholar 

  53. Spencer, T. : Localization for random and quasiperiodic potentials. J. Stat. Phys. 51: 1009–1019 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  54. Stollmann, P.: Caught by disorder. Bound States in Random Media. Birkaüser 2001.

  55. Tcheremchantsev, S.: How to prove dynamical localization, Commun. Math. Phys. 221: 27–56 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang, W.-M.: Microlocalization, percolation, and Anderson localization for the magnetic Schrödinger operator with a random potential. J. Funct. Anal. 146: 1–26 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, W.-M.: Localization and universality of Poisson statistics for the multidimensional Anderson model at weak disorder. Invent. Math. 146: 365–398 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Germinet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germinet, F., Klein, A. New Characterizations of the Region of Complete Localization for Random Schrödinger Operators. J Stat Phys 122, 73–94 (2006). https://doi.org/10.1007/s10955-005-8068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8068-9

Keywords

Navigation