Skip to main content
Log in

On the Truncation of Systems with Non-Summable Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this note we consider long-range q-states Potts models on Z d, d≥ 2. For various families of non-summable ferromagnetic pair potentials φ(x)≥ 0, we show that there exists, for all inverse temperature β > 0, an integer N such that the truncated model, in which all interactions between spins at distance larger than N are suppressed, has at least q distinct infinite-volume Gibbs states. This holds, in particular, for all potentials whose asymptotic behaviour is of the type φ(x)∼ ‖x−α, 0≤α≤ d. These results are obtained using simple percolation arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman, J. T. Chayes, L. Chayes, and C. N. Newman. Discontinuity of the magnetization in one-dimensional \(1/|x-y|^2\) Ising and Potts models. Journ. Stat. Phys., 50:1–40, 1988.

    Google Scholar 

  2. M. Aizenman, H. Kesten, and C. N. Newman. Uniqueness of the infinite cluster and continuity of the connectivity functions for short and long range percolation. Commun. Math. Phys., 111:505–531, 1987.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. N. Berger. Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys., 226:531–558, 2002.

    Article  MATH  ADS  Google Scholar 

  4. C. E. Bezuidenhout, G. R. Grimmett, and H. Kesten. Strict inequality for critical values of Potts models and random-cluster processes. Commun. Math. Phys., 158:1–16, 1993.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.

    MATH  Google Scholar 

  6. M. Biskup, L. Chayes, and N. Crawford. Mean-field driven first-order phase transitions in systems with long-range interactions. To appear in Journ. Stat. Phys., 2005.

  7. T. Bodineau. Slab percolation for the Ising model. Probab. Theory and Rel. Fields, 132(1):83–118, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Bovier and M. Zahradník. The low-temperature phases of Kac-Ising models. Journ. Stat. Phys., 87:311–332, 1997.

    Article  MATH  Google Scholar 

  9. S. A. Cannas, A. de Magalhães, and F. A. Tamarit. Evidence of exactness of the mean field theory in the nonextensive regime of long-range spin models. Phys. Rev. Lett., 122:597–607, 1989.

    Google Scholar 

  10. S. A. Cannas and F. A. Tamarit. Long-range interactions and nonextensivity in ferromagnetic spin models. Phys. Rev. B, 54:R12661–R12664, 1986.

    Article  ADS  Google Scholar 

  11. M. Cassandro and E. Presutti. Phase transitions in Ising systems with long but finite range interactions. Mark. Proc. Rel. Fields, 2:241–262, 1996.

    Google Scholar 

  12. F. J. Dyson. Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys., 12:91–107, 1969.

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Fortuin. On the random cluster model. II. Physica, 58:393–418, 1972.

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Fortuin. On the random cluster model. III. Physica, 59:545–570, 1972.

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Fortuin and P. Kasteleyn. On the random cluster model. I. Physica, 57:536–564, 1972.

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Friedli, B. N. B. de Lima, and V. Sidoravicius. On long range percolation with heavy tails. Elect. Comm. in Probab., 9:175–177, 2004.

    MATH  MathSciNet  Google Scholar 

  17. S. Friedli and C.-É. Pfister. Non-analyticity and the van der Waals limit. Journ. Stat. Phys., 114(3/4):665–734, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Fröhlich and T. Spencer. The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy. Commun. Math. Phys., 84:87–101, 1982.

    Article  MATH  ADS  Google Scholar 

  19. H.-O. Georgii. Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics, 1988.

  20. H.-O. Georgii, O. Häggström, and C. Maes. The random geometry of equilibrium phases. In C. Domb and J. Lebowitz, editors, Phase Transitions and Critical Phenomena Vol. 18, pages 1–142. Academic Press, London, 2001.

    Chapter  Google Scholar 

  21. G. Grimmett, M. Keane, and J. M. Marstrand. On the connectedness of a random graph. Math. Proc. Cambridge Phil. Soc., 96:151–166, 1984.

    Google Scholar 

  22. G. Grimmett and J. M. Marstrand. The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser, A 430:439–457, 1990.

    Google Scholar 

  23. P. Hertel, H. Narnhofer, and W. Thirring. Thermodynamic functions for fermions with gravostatic and electrostatic interactions. Commun. Math. Phys., 28:159–176, 1972.

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Kac, G. E. Uhlenbeck, and P. C. Hemmer. On the van der Waals theory of the vapor-liquid equilibrium. Journ. Math. Phys., 4:216–228, 1962.

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Kesten. Asymptotics in high dimensions for percolation. In O. S. Publ., editor, Disorder in physical systems, pages 219–240. Oxford Univ. Press, New York, 1990.

    Google Scholar 

  26. J. L. Lebowitz and O. Penrose. Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition. Journ. Math. Phys., 7:98–113, 1966.

    Article  ADS  MathSciNet  Google Scholar 

  27. T. M. Liggett, R. H. Schonmann, and A. M. Stacey. Domination by product measures. Ann. Probab., 25:71–95, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Meester and J. E. Steif. On the critical value for long range percolation in the exponential case. Commun. Math. Phys., 180:483–504, 1996.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. S. A. Pirogov and Y. G. Sinai. Phase diagrams of classical lattice systems. Teoreticheskaya i Matematicheskaya Fizika, 26(1):61–76, 1976.

    MathSciNet  Google Scholar 

  30. V. Sidoravicius, D. Surgailis, and M. E. Vares. On the truncated anisotropic long-range percolation on Z 2. Stoch. Proc. and Appl., 81:337–349, 1999.

    Google Scholar 

  31. F. Tamarit and C. Anteneodo. Rotators with long-range interactions: Connections with the mean-field approximation. Phys. Rev. Lett., 84:208, 2000.

    Article  PubMed  ADS  Google Scholar 

  32. B. P. Vollmayr-Lee and E. Luijten. Kac-potential treatment of nonintegrable interactions. Phys.Rev. E, 63:031108, 2001.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Friedli.

Additional information

Work supported by Swiss National Foundation for Science, Conselho Nacional de Desenvolvimento Cientìfico e Tecnològico, and Programa de Auxìlio para Recèm Doutores PRPq-UFMG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedli, S., de Lima, B.N.B. On the Truncation of Systems with Non-Summable Interactions. J Stat Phys 122, 1215–1236 (2006). https://doi.org/10.1007/s10955-005-8023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8023-9

Key Words

Navigation