Skip to main content
Log in

Maximal Clusters in Non-Critical Percolation and Related Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the maximal non-critical cluster in a big box in various percolation-type models. We investigate its typical size, and the fluctuations around this typical size. The limit law of these fluctuations is related to maxima of independent random variables with law described by a single cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abadi, Sharp error terms and necessary conditions for exponential hitting times in mixing processes. Ann. Probab. 32:243–264 (2004).

    Google Scholar 

  2. M. Abadi, J. R. Chazottes, F. Redig and E. Verbitskyi, Exponential distribution for the occurrence of rare patterns in Gibbsian random fields. Comm. Math. Phys. 246:269–294 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  3. K. S. Alexander, J. T. Chayes and L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation. Commun. Math. Phys. 131(1):1–10 (1990).

    Google Scholar 

  4. N. Alon and J. H. Spencer, The Probabilistic Method, 2nd Ed. (Wiley, New York, 2000).

    Google Scholar 

  5. M. Z. Bazant, The largest cluster in subcritical percolation. Phys. Rev. E 62:1660– (2000).

    Google Scholar 

  6. T. Bodineau, D. Ioffe and Y. Velenik, Rigorous probabilistic analysis of equilibrium crystal shapes. J. Math. Phys. 41(3):1033–1098 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  7. B. Bollobás, Random Graphs, 2nd Ed. (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  8. C. Borgs, J. T. Chayes, H. Kesten and J. Spencer, The birth of the infinite cluster: finite-size scaling in percolation. Commun. Math. Phys. 224:153–204 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Cerf, Large deviations of the finite cluster shape for two-dimensional percolation in the Hausdorff and L1 topology. J. Theor. Probab. 12(4):1137–1163 (1999).

    MathSciNet  Google Scholar 

  10. R. Cerf, Large Deviations for three Dimensional Supercritical Percolation. Astérisque No. 267 (2000).

  11. R. Cerf, The Wulff crystal in Ising and Percolation models. Saint Flour lecture notes, Preprint (2004).

  12. R. Cerf and A. Pisztora, Phase coexistence in Ising, Potts and percolation models. Ann. Inst. H. Poincare Probab. Statist. 37(6):643–724 (2001).

    MathSciNet  Google Scholar 

  13. J. R. Chazottes and F. Redig, Occurrence, repetition and matching of patterns in the low temperature Ising model. Preprint available at xxx. lanl. gov (2003).

  14. Erdös-Rényi, On the evolution of random graphs. Bull. Inst. Internat. Statist. 38:343–347 (1961).

    MathSciNet  Google Scholar 

  15. Erdös-Rényi, On a new law of large numbers. J. Analyse Math. 23:103–111 (1970).

    MathSciNet  Google Scholar 

  16. J. Galambos, The Asymptotic Theory of Extreme Order Statistics. (Wiley, New-York, 1978).

  17. H. O. Georgii, Gibbs Measures and Phase Transitions. (Walter de Gruyter, Berlin, 1988).

    Google Scholar 

  18. H. O. Georgii, O. Häggström and C. Maes, The random geometry of equilibrium phases. In: Phase Transitions and Critical Phenomena, Vol. 18, Eds. C. Domb and J.L. Lebowitz (Academic Press, London), pp. 1–142 (2001).

    Google Scholar 

  19. G. Grimmett, Percolation, 2nd Ed. (Springer-Verlag, 1999).

  20. S. Janson, T. Łuczak and A. Ruciński, Random Graphs. (John Wiley and Sons, New York, 2000).

    Google Scholar 

  21. S. Karlin and A. Dembo, Limit distributions of maximal segmental score emong Markov-dependent partial sums. Adv. Appl. Prob. 24:113–140 (1992).

    MathSciNet  Google Scholar 

  22. M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. (Springer-Verlag, 1982).

  23. A. Wyner, More on recurrence and waiting times. Ann. Appl. Probab. 9:780–796 (1999).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco van Der Hofstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Der Hofstad, R.v., Redig, F. Maximal Clusters in Non-Critical Percolation and Related Models. J Stat Phys 122, 671–703 (2006). https://doi.org/10.1007/s10955-005-8012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8012-z

Key Words

Navigation