Skip to main content
Log in

On a Taylor-Couette Type Bifurcation for the Stationary Nonlinear Boltzmann Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper studies the stationary nonlinear Boltzmann equation for hard forces, in a Taylor-Couette setting between two coaxial, rotating cylinders with given indata of Maxwellian type on the cylinders. A priori L q-estimates are obtained, and used to prove a Taylor type bifurcation with isolated solutions and a hydrodynamic limit control, based on asymptotic expansions together with a rest term correction. The positivity of such solutions is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arkeryd and A. Nouri, The stationary nonlinear Boltzmann equation in a Couette setting with multiple, isolated $L^q$-solutions and hydrodynamic limits, Journ. Stat. Phys. 118:849–881 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bardos, E. Caflish, and B. Nicolaenko, The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas, Comm. Pure Appl. Math. 39:323–352 (1986).

    MathSciNet  MATH  Google Scholar 

  3. C. Cercignani, Mathematical methods in kinetic theory, Plenum Press New York, 1990.

    MATH  Google Scholar 

  4. P. Chossat and G. Iooss, The Couette-Taylor problem, Springer-Verlag Berlin, 1994.

    MATH  Google Scholar 

  5. W. A. Coppel, Disconjugacy, Springer-Verlag, 1971.

  6. L. Desvillettes, Sur quelques hypothèses nécessaires à l'obtention du développement de Chapman-Enskog, Preprint, 1994.

  7. F. Golse and F. Poupaud, Stationary solutions of the linearized Boltzmann equation in a half space, Math. Meth. Appl. Sci. 11:483–502 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Grad, Asymptotic theory of the Boltzmann equation I, Phys. Fluids 6:147–181 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Grad, Asymptotic theory of the Boltzmann equation II, Rarefied Gas Dynamics, pp. 26–59, Acad. Press NY, 1963.

  10. J. P. Guiraud, Problème aux limites intérieur pour l'équation de Boltzmann en régime stationnaire, faiblement non linéaire, J. Mécanique 11:183–231 (1972).

    MathSciNet  MATH  Google Scholar 

  11. M. N. Kogan, Rarefied Gas Dynamics, Plenum NY, 1969.

  12. N. Maslova, Nonlinear evolution equations, Kinetic approach, Series on Advances in Mathematics for Applied Sciences, Vol. 10, World Scientific, 1993.

  13. Y. Sone, Kinetic Theory and Fluid Dynamics, Birkhäuser Boston, 2002.

  14. Y. Sone and T. Doi, Bifurcation of a flow of a gas between rotating coaxial circular cylinders with evaporation and condensation, Rarefied Gas Dynamics, AIAA New York, 2002, 646–653.

  15. W. Velte, Stabiliät und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylorproblem, Arch. Rat. Mechs. Anal. 22:1–14 (1966).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Arkeryd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkeryd, L., Nouri, A. On a Taylor-Couette Type Bifurcation for the Stationary Nonlinear Boltzmann Equation. J Stat Phys 124, 401–443 (2006). https://doi.org/10.1007/s10955-005-8008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8008-8

Key Words

Navigation