Skip to main content
Log in

Hysteresis Phenomenon in Deterministic Traffic Flows

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic “particle-hopping” traffic flow model being a straightforward generalization to the well known Nagel–Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the “free-flowing” (or “gaseous”) phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the “jammed” (or “liquid”) phase. Between the two critical values each of these phases may take place, which can be interpreted as an “overcooled gas” phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Barlovic, T. Huisinga, A. Schadschneider, and M. Schreckenberg, Open boundaries in a cellular automaton model for traffic flow with metastable states, Phys. Rev. E 66, 046113:11 (2002).

    Google Scholar 

  2. M. Blank (2001) ArticleTitleDynamics of traffic jams: order and chaos Moscow Math. J. 1 IssueID1 1–26

    Google Scholar 

  3. M. Blank (2003) ArticleTitleErgodic properties of a simple deterministic traffic flow model J. Stat. Phys. 111 IssueID3–4 903–930 Occurrence Handle10.1023/A:1022806500731

    Article  Google Scholar 

  4. D. Chowdhury L. Santen A. Schadschneider (2000) ArticleTitleStatistical physics of vehicular traffic and some related systems Physics Rep. 329 199–329 Occurrence Handle10.1016/S0370-1573(99)00117-9

    Article  Google Scholar 

  5. H. Fuks (1999) ArticleTitleExact results for deterministic cellular automata traffic models Phys. Rev. E 60 197–202 Occurrence Handle10.1103/PhysRevE.60.197

    Article  Google Scholar 

  6. L. Gray D. Griffeath (2001) ArticleTitleThe ergodic theory of traffic jams J. Stat. Phys. 105 IssueID3/4 413–452 Occurrence Handle10.1023/A:1012202706850

    Article  Google Scholar 

  7. S. Krauss P. Wagner C. Gawron (1996) ArticleTitleContinuous limit of the Nagel-Schreckenberg model Phys. Rev. E 54 3707–3712 Occurrence Handle10.1103/PhysRevE.54.3707

    Article  Google Scholar 

  8. S. Krauss P. Wagner C. Gawron (1997) ArticleTitleMetastable states in a microscopic model of traffic flow Phys. Rev. E 55 5597–5602 Occurrence Handle10.1103/PhysRevE.55.5597

    Article  Google Scholar 

  9. R. LeVecque (1990) Numerical Methods for Conservation Laws Lectures in Mathematics ETH Zurich Birkhauser, Basel

    Google Scholar 

  10. E. Levine G. Ziv L. Gray D. Mukamel (2004) ArticleTitlePhase transitions in traffic models J. Stat. Phys. 117 IssueID5–6 819–830 Occurrence Handle10.1007/s10955-004-5706-6

    Article  Google Scholar 

  11. T. M. Liggett (1999) Stochastic interacting systems: contact, voter, and exclusion processes Springer-Verlag NY

    Google Scholar 

  12. M. J. Lighthill G. B. Whitham (1955) ArticleTitleOn kinematic waves: II. A theory of traffic flow on long crowded roads Proc. of R Soc. A 229 317–345

    Google Scholar 

  13. K. Nishinari M. Fukui A. Schadschneider (2004) ArticleTitleA stochastic cellular automaton model for traffic flow with multiple metastable states J. Phys. A 37 3101–3110

    Google Scholar 

  14. K. Nagel M. Schreckenberg (1992) ArticleTitleA cellular automaton model for freeway traffic J. Physique I 2 2221–2229 Occurrence Handle10.1051/jp1:1992277

    Article  Google Scholar 

  15. K. Nishinari D. Takahashi (1998) ArticleTitleAnalytical properties of ultradiscrete Burgers equation and rule-184 cellular automaton J. Phys. A 31 IssueID24 5439–5450

    Google Scholar 

  16. A. Schadschneider M. Schreckenberg (1997) ArticleTitleTraffic flow models with ‘slow-to-start’ rules Ann. Physik 6 541 Occurrence HandleMR1483979

    MathSciNet  Google Scholar 

  17. H. M. Zhang (1999) ArticleTitleA mathematical theory of traffic hysteresis Transport. Res. B 33 1–23 Occurrence Handle10.1016/S0191-2615(98)00022-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Blank.

Additional information

This research has been partially supported by Russian Foundation for Fundamental Research and French Ministry of Education grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blank, M. Hysteresis Phenomenon in Deterministic Traffic Flows. J Stat Phys 120, 627–658 (2005). https://doi.org/10.1007/s10955-005-5959-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-5959-8

Key words

Navigation