Skip to main content
Log in

Instanton Calculus for the Self-Avoiding Manifold Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We compute the normalisation factor for the large order asymptotics of perturbation theory for the self-avoiding manifold (SAM) model describing flexible tethered (D-dimensional) membranes in d-dimensional space, and the ε-expansion for this problem. For that purpose, we develop the methods inspired from instanton calculus, that we introduced in a previous publication (Nucl. Phys. B 534 (1998) 555), and we compute the functional determinant of the fluctuations around the instanton configuration. This determinant has UV divergences and we show that the renormalized action used to make perturbation theory finite also renders the contribution of the instanton UV-finite. To compute this determinant, we develop a systematic large-d expansion. For the renormalized theory, we point out problems in the interplay between the limits ε→ 0 and d→∞, as well as IR divergences when ε=0. We show that many cancellations between IR divergences occur, and argue that the remaining IR-singular term is associated to amenable non-analytic contributions in the large-d limit when ε=0. The consistency with the standard instanton-calculus results for the self-avoiding walk is checked for D=1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Nelson L. Peliti (1987) J de Physique 48 1085 Occurrence Handle10.1051/jphys:019870048070108500

    Article  Google Scholar 

  2. For an introduction, references and review see: Statistical Mechanics of Membranes and Surfaces, in Proc. Fifth Jerusalem Winter School Theor Phy, D. R. Nelson, T. Piran and S. Weinberg, eds. (World Scientific, Singapore 1989)

  3. Statistical Mechanics of Membranes and Surfaces, 2nd edn. D. R. Nelson, T. Piran and S. Weinberg, eds. (World Scientific, Singapore, 2004)

  4. K. J. Wiese, Polymerized membranes, a review, in Phase Transitions and Critical Phenomena, Vol. 19, C. Domb and J. Lebowitz, eds. (Academic Press, London, 1999).

  5. Y. Kantor M. Kardar D.R. Nelson (1986) Phys. Rev. Lett 57 791 Occurrence Handle10.1103/PhysRevLett.57.791 Occurrence Handle1986PhRvL..57..791K

    Article  ADS  Google Scholar 

  6. Y. Kantor M. Kardar D.R. Nelson (1987) Phys. Rev. A 35 3056 Occurrence Handle10.1103/PhysRevA.35.3056 Occurrence Handle1987PhRvA..35.3056K Occurrence Handle884308

    Article  ADS  MathSciNet  Google Scholar 

  7. J.A. Aronovitz T.C. Lubensky (1988) Phys. Rev. Lett 60 2634 Occurrence Handle10.1103/PhysRevLett.60.2634 Occurrence Handle1988PhRvL..60.2634A

    Article  ADS  Google Scholar 

  8. M. Kardar D. Nelson (1987) Phys. Rev. Lett 58 2774 Occurrence Handle1987PhRvL..58.2774K

    ADS  Google Scholar 

  9. M. Kardar D. Nelson (1988) Phys. Rev. A 58 966 Occurrence Handle1988PhRvA..38..966K Occurrence Handle955226

    ADS  MathSciNet  Google Scholar 

  10. S.F. Edwards (1965) Proc. Phys. Soc. Lond 85 613 Occurrence Handle0125.23205

    MATH  Google Scholar 

  11. For a general review see: J. des Cloizeaux and G. Jannink, Polymers in Solution, their Modeling and Structure, (Clarendon Press, Oxford, 1990).

  12. F. David B. Duplantier E. Guitter (1994) Phys. Rev. Lett 72 311 Occurrence Handle10.1103/PhysRevLett.72.311 Occurrence Handle1994PhRvL..72..311D Occurrence Handle1253933 Occurrence Handle0973.82506

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. F. David, B. Duplantier, and E. Guitter, Renormalization Theory for the Self-Avoiding Polymerized Membranes, Saclay Preprint T/97001, cond-mat/9702136

  14. F. David K.J. Wiese (1998) Nucl. Phys. B 535 555–595 Occurrence Handle10.1016/S0550-3213(98)00667-1 Occurrence Handle1998NuPhB.535..555D Occurrence Handle1656316 Occurrence Handle0971.82018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. F.J. Dyson (1952) Phys. Rev 85 631 Occurrence Handle10.1103/PhysRev.85.631 Occurrence Handle1952PhRv...85..631D Occurrence Handle0046.21501 Occurrence Handle46927

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. C.S. Lam (1968) Nuovo Cimento 55A 258 Occurrence Handle1968NCimA..55..258L

    ADS  Google Scholar 

  17. C.M. Bender T.T. Wu (1969) Phys. Rev 184 1231 Occurrence Handle10.1103/PhysRev.184.1231 Occurrence Handle1969PhRv..184.1231B Occurrence Handle260323

    Article  ADS  MathSciNet  Google Scholar 

  18. L.N. Lipatov, JETP Lett. 24:157 (1976); Sov. Phys. JETP 44:1055 (1976); JETP Lett. 25:104 (1977); Sov. Phys. JETP 45:216 (1977)

  19. For a general review on instanton calculus see: J.Zinn-Justin, The principles of instanton calculus, in Recent Advances in Field Theory and Statistical Mechanics, XXXIX Les Houches Summer School 1982, J.-B. Zuber and R. Stora, eds. (North Holland, Amsterdam, 1984). J. Zinn-Justin, Quantum Field Theory and Critical Phenomena(Clarendon Press, Oxford 1993).

  20. P.G. Gennes Particlede (1972) Phys. Lett. A 38 339 Occurrence Handle1972PhLA...38..339D

    ADS  Google Scholar 

  21. J. desCloizeaux (1981) J. de Physique 42 635

    Google Scholar 

  22. F. David K.J. Wiese (1996) Phys. Rev. Lett 76 4564 Occurrence Handle1996PhRvL..76.4564D

    ADS  Google Scholar 

  23. K.J. Wiese F. David (1997) Nucl. Phys. B 487 529 Occurrence Handle10.1016/S0550-3213(96)00588-3 Occurrence Handle1997NuPhB.487..529W Occurrence Handle1432820 Occurrence Handle0925.81113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. B. Duplantier (1987) Phys. Rev. Lett 58 2733 Occurrence Handle10.1103/PhysRevLett.58.2733 Occurrence Handle1987PhRvL..58.2733D Occurrence Handle894899

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay J. Wiese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, F., Wiese, K.J. Instanton Calculus for the Self-Avoiding Manifold Model. J Stat Phys 120, 875–1035 (2005). https://doi.org/10.1007/s10955-005-5253-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-5253-9

Keywords

Navigation